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A B S T R A C T

Recent research in cognitive neuroscience has begun to uncover the processes underlying increasingly complex
voluntary behaviours, including learning and decision-making. Partly this success has been possible by pro-
gressing from simple experimental tasks to paradigms that incorporate more ecological features. More specifi-
cally, the premise is that to understand cognitions and brain functions relevant for real life, we need to introduce
some of the ecological challenges that we have evolved to solve. This often entails an increase in task complexity,
which can be managed by using computational models to help parse complex behaviours into specific compo-
nent mechanisms. Here we propose that using computational models with tasks that capture ecologically re-
levant learning and decision-making processes may provide a critical advantage for capturing the mechanisms
underlying symptoms of disorders in psychiatry. As a result, it may help develop mechanistic approaches to-
wards diagnosis and treatment. We begin this review by mapping out the basic concepts and models of learning
and decision-making. We then move on to consider specific challenges that emerge in realistic environments and
describe how they can be captured by tasks. These include changes of context, uncertainty, reflexive/emotional
biases, cost-benefit decision-making, and balancing exploration and exploitation. Where appropriate we high-
light future or current links to psychiatry. We particularly draw examples from research on clinical depression, a
disorder that greatly compromises motivated behaviours in real-life, but where simpler paradigms have yielded
mixed results. Finally, we highlight several paradigms that could be used to help provide new insights into the
mechanisms of psychiatric disorders.

1. Introduction

Recent research in cognitive neuroscience has produced an array of
paradigms and computational approaches to study facets of motivation,
learning, and decision-making. While our understanding of the under-
lying mechanisms in the healthy brain is progressing at a fast pace, the
progress made in understanding psychiatric disorders has been slow in
comparison. Patients and their practitioners report very striking im-
pairments in day-to-day learning and decision-making, yet many lab
studies reveal only small differences, if any, between patients and
healthy controls. Several reasons could account for this disparity in-
cluding patient sample sizes [1], disease heterogeneity [2,3], or that
disease phenotypes cut across diagnostic criteria for different diseases
[4,5]. But there is another possibility explored here, namely that
commonly used paradigms may not be sufficiently sensitive to the re-
levant features of everyday cognitive processes.

Tasks in the laboratory can be overly simplistic and not capture the
sophistication and complexity of real-life situations. Alternatively, tasks

can be framed in ways that are unnatural and for that reason fail to
capture cognitions relevant for everyday life. To counteract these pro-
blems, basic neuroscience research has recently turned towards la-
boratory tasks that incorporate more ecological features ([6–10],
Table 1 and Fig. 1). Here, the emphasis is on designing experiments that
capture the types of processes that our brains have evolved to solve.
More specifically, the idea is to identify the relevant cognitive process
of interest, and to design a task, which requires the same process (and
thus underlying brain networks) and thus mimics the computation
identified as relevant to everyday learning and decision-making. Eco-
logically inspired designs do not by nature have to be more complex or
be run in natural environments (there is still a balance to be struck
between ecological validity and simplicity) but they require careful
consideration of the processes relevant for a behaviour of interest and
tasks that are adapted to precisely probe the underlying mechanisms.
This review focuses on the question of whether paradigms that capture
features of the cognitive processes required in real-life may also help us
understand what is functionally changed in psychiatric disorders. In the
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majority of cases, the progress made in basic neuroscience has not yet
been translated to clinical populations.

We will first provide an introduction to basic concepts of learning and
decision-making for readers new to this field, including basic concepts of
computational models of cognition. Computational modelling is essential,
especially for creating more sophisticated tasks, because models can parse
and quantify the performance on different sub-processes that may be re-
cruited within the same task. In the remainder of the review, we illustrate,
for both learning and decision-making, how simple paradigms have been
extended to begin to capture some of the sophistication of natural en-
vironments, and how this has provided some key insights into both beha-
viour and brain function that cannot be gained from simpler tasks alone.
Throughout, we draw examples from clinical depression to illustrate the
relevance of the ecological approach. We propose that ecological tasks may
help to bridge the gap between impairments seen in real-life and those re-
ported in the laboratory. This may allow the field to advance from
symptom-based to more mechanistic and quantitative diagnoses (see also
[11–15]). However, we find that, while researchers have successfully begun
to apply simpler paradigms to psychiatric patients, most of the more ad-
vanced and ecologically valid paradigms that we highlight have not yet
been used in the context of psychiatry. One potential way forward could be
to use these tasks in larger samples of patients online [1,16,17] to help
identify sub-clusters within disorders but also common symptoms across
disease boundaries.

2. Learning

2.1. Basic learning processes

Learning from experience is crucial for adaptive behaviour. Many de-
cisions we make in daily life are based on values that we have learnt from
experience. For example, when deciding whether to go out to meet friends
at a pub, this depends on how much you have enjoyed similar experiences
in the past. Studying learning holds great promise for understanding de-
pression because it intuitively relates to many of the typical symptoms. As
an illustrative example, let’s imagine a depressed patient showing social
withdrawal, but on one occasion she goes out and thoroughly enjoys
meeting her friends. Nevertheless, when deciding whether to go out again,
she chooses not to, possibly because she did not update her belief about how
enjoyable this would be. In this way, reduced learning from positive ex-
periences could be a mechanism that maintains depression. Of course, there
are other potential reasons for deciding not to go out, including for example
motivational deficits, which we will consider later. But what this example

highlights is how real-life complexities can be parsed into separate mea-
surable component processes. In the following, we will first consider simple
learning processes, originating from a behaviourist framework, before
considering more ecological types of learning from a cognitive and com-
putational perspective.

The simplest learning scenario, studied extensively in psychiatric
research, involves the learning of associations between a single stimulus
(e.g. an abstract shape) and an outcome (e.g. monetary reward). This
kind of scenario directly relates to behaviourist views on behaviour and
therapy [18] which have focused on different forms of conditioning
(Pavlovian or operant); e.g. symptoms of anxiety are seen as a mala-
daptive learnt response to a particular stimulus and the treatment in-
volves learning new responses [19–21].

More specifically, in a typical experiment (Fig. 2A), learning is
measured by presenting repeated pairings (trials) of the stimulus fol-
lowed by the reward or no reward; the probability of a stimulus being
followed by a reward is set by the experimenter. The measure of
(clinical) interest is how participants learn these associations between
stimuli and rewards, as indicated, for example, by how quickly they
prefer stimuli that more likely lead to reward. To capture this learning
we can use a computational model, i.e. an algorithm that simulates the
processes going on in participants’ brains as they gradually learn across
trials (Fig. 2B). In this particular model, learning is driven by how
unexpected the outcome is (i.e., by the prediction error (PE): the dif-
ference between outcome and prediction). A large range of studies have
identified PE signals in several brain areas [22–26], especially in re-
gions receiving strong dopaminergic inputs such as the striatum. How
much the PE is used (by the model or participants’ brains) to update
their beliefs is determined by a free parameter in the model, called the
learning rate (α). The higher the learning rate, the faster a person up-
dates their beliefs (Fig. 2C+E). This mathematical description of the
learning process as one that simply depends on how frequently a sti-
mulus or action is paired with reward has also been coined as ‘model-
free’ learning (see e.g. [27] for a review). Unlike other types of learning,
it does not rely on a model of the world. However, some key features
that determine whether an agent is indeed behaving in a model-free
way cannot be examined by the simple task design described above.
Specifically, model-free learning is not flexible. For example, you might
find yourself taking your usual way to work even though you actually
intended to go somewhere else today. Furthermore there is evidence
that even in simple tasks, humans use other brain mechanisms, such as
working memory, to supplement the model-free learning mechanism
[28]. Therefore, to avoid confusion we will in the following use the

Table 1
A list of tasks incorporating features of learning and decision-making that are relevant in natural environments. For all of these tasks, computational models have been proposed. The
reader is referred to the text and relevant papers for further details. This list is meant to highlight some important examples but it is not an exhaustive list.

Learning

Sharot et al., Nature [252] How strongly is the updating of people’s beliefs biased towards positive compared to negative
information (‘optimism bias’)?

Behrens et al., Nat. Neurosci. [51] 2007; Mathys et al. [52] Fron Hum
Neurosci., 2011

How do people flexibly adjust their speed of learning to the environment (thus providing a measure
of the ability to learn that is not available when learning in stable environments)?

Jocham et al. [79], Neuron, 2016; Lee et al. [80] PLOS Biol., 2015; Leong et al.
[61], Neuron, 2017

How do people attribute outcomes to causes and what are potential biases when making such
attributions?

Scholl and Kolling et al., J. Neurosci. [102], 2015 How do people focus learning on what is important, ignoring irrelevant but salient reward
information?

Lee et al., Neuron [97], 2014 How do people flexibly adjust, or arbitrate, between model-based and model-free learning systems?

Decision-making

Klein-Flügge et al, PLOS Comput. Biol. [247] 2015 How do people weigh up rewards and different kinds of costs (delays or effort)?
Huys et al., PLOS Comput. Biol. [169] 2011; Guitart-Masip et al. [165],

NeuroImage, 2012; Bach et al., Curr. Biol. [176], 2014
How do reflexive Pavlovian and reflective goal-directed valuation systems interact?

Eldar et al. [182] Nat. Commun., 2015 How do emotional states induced by task-irrelevant wins or losses influence subsequent evaluations
of stimuli?

Wilson et al. [224] J. Exp. Psychol., 2015; Blanco et al. [29], Cognition, 2013 How do people adjust the degree of exploration and exploitation given environmental constraints?
Kolling et al. [119] Science, 2012 How do people weigh up whether to take an immediately available option or to look for alternatives

elsewhere?
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term ‘simple learning tasks’, rather than ‘model-free’.
Paradigms measuring learning of these simple, behaviourist-inspired,

associations have been used extensively to study learning in depression. The
original hypothesis was that depression should be related to worse learning,
which should be reflected in a reduced learning rate. Below we explain why
this may not be the best possible hypothesis. Indeed, the behavioural results
of different studies have been mixed and not consistently demonstrated
learning deficits in simple learning tasks [29–41]. Changes in neural signals,
by contrast, specifically a reduced PE encoding in subcortical areas in-
cluding the striatum, have been reported somewhat more consistently
([42–44], but see also [17] for intact PE coding in a non-learning context).
One cause for the variability of the behavioural findings might be that each
individual study only included a small number of participants and while
some findings have been brought together [45], no formal meta-analysis has
been performed on the complete evidence. However, a meta-analysis [46]
of a subset of these studies found no evidence for a change of the learning
rate in depression. Relatedly, Gillan et al. [47] recently analysed learning in
a large online sample of 1400 participants and again, found no evidence for
a relationship between measures of simple (model-free) learning and
questionnaire measures of depression severity.

One potential explanation for the discrepancy between real-life deficits
and the apparent absence (or at best subtle nature) of basic learning deficits
in depression could relate to the nature of the learning processes probed by

these tasks. Using more ecological tasks could reveal learning deficits that
are not apparent in simpler tasks. As we will show in more detail below
(section ‘Not all value is equal‘), different types of values are processed in
different brain regions. Therefore, it is possible that depression will only
impact learning about some types of value but not others. Indeed, when
measuring updating (i.e. learning) of beliefs about real-life events, two re-
cent studies consistently found that depression alters learning [48,49].
Healthy controls updated the beliefs of how likely negative life events were
to happen to them in a biased way, i.e. they updated their beliefs more
when given desirable information. By contrast, depressed patients did not
show this optimism bias in learning. Another reason why ecological tasks
may reveal changes in learning more clearly than simpler tasks is because
more sophisticated learning mechanisms need to be recruited. In the next
section, we will consider precisely such situations, namely when learning
needs to be adapted to match the stability of the environment or when
making causal attributions in environments with many possible causes.

2.2. Environmental context and adaptive learning

As noted earlier, in the simplest learning experiment, the speed of
learning as captured by the learning rate is a measure of individual
differences. Many studies focus on whether patients learn faster or
slower than controls, with faster learning often being equated to better

Fig. 1. Overview of processes relevant for learning and decision-making.
Many real-life situations use cognitions that can be grouped under the umbrella terms of learning and decision-making. However, examining the real-life situations more closely, we can
see that there are many distinct component processes that rely on different neural substrates and can therefore be differentially affected by psychiatric disorders. A) When making
decisions, we take into account different kinds of information, such as different types of rewards (e.g. money, food) or costs (e.g. delay or effort). This can be new information only
available explicitly at the time of choice (e.g. reading a menu in a restaurant) or it can be learnt and recalled from past experience. Beyond these types of information that we want to take
into account, other stimuli may not be relevant to the decision at hand, yet reflexively affect our judgment (e.g. seeing a spider crawl across the menu you are reading). Integrating across
different kinds of information ultimately enables us to make decisions. B) In real-life situations, we make different types of decisions. Sometimes we are presented with concrete options
amongst which to choose (‘A or B?’). Sometimes we have to decide whether to approach something or avoid it. Lastly, sometimes we are engaged with a behaviour (e.g. relaxing on the
sofa) and need to decide whether to continue with this default or go and look for something else (e.g. decide to go into town to look for a restaurant (forage)). C) As a result of our
decisions, outcomes happen (e.g. eating nice food, having a good conversation). D) However, in addition to the plausible causes for outcomes (good restaurant−> good food or
friends−> enjoyable conversations), there can also be other causes present (e.g. day of the week) that are less likely to have caused the outcome. E) This multiplicity of causes and
outcomes poses an attribution problem (i.e. how do you know which outcome to attribute to which cause). This can be resolved using diverse mechanisms. For example, we can either use
a model of the world that tells us which outcomes and causes we should learn about and how they might relate; or we can learn in a model-free way, i.e. learn about all outcomes and
causes (i.e. also about the implausible or irrelevant ones) based on how often outcomes and causes occur together. Developing tasks that can capture the ecological complexity illustrated
by this example is of paramount importance for understanding the psychological and neural mechanisms underlying psychiatric disorders in real-life.
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learning. However, in ecological environments, faster learning is not
necessarily better learning. Instead the speed of learning should be
matched to the environment ([50], Fig. 2C+E and Fig. 3A). To illus-
trate this, imagine you are trying to predict what mood your friend is in;
if your friend generally has a stable mood, then knowing how she has
felt over the last week gives you a good indication of how she feels now.
In contrast, if your friend is stressed and therefore has more unstable or
volatile moods, then knowing how she felt last week may not be in-
formative. Rather, you need to find out how she felt yesterday or even
an hour ago. Expressing this intuition in terms of learning rates, if the
association you are trying to learn is stable, a low learning rate is ad-
vantageous but for unstable associations, i.e. those that change more
quickly over time, fast updates and thus a high learning rate are more
appropriate. As a computational measure of ‘the goodness’ of learning,
we can then consider how well participants can adapt their learning
rate to match the environment.

Tasks have been designed to measure the ability to adjust the
learning rate to the environment [51,52] and they have recently also
been applied to psychiatric questions [53–55]. For example, Browning

et al. [53] found that increased levels of anxiety (which is often co-
morbid with depression) correlated with a decreased ability to adapt to
different environments. In other words, anxious individuals showed a
reduced change in learning between unpredictable and changing con-
texts (where it makes sense to feel anxious) compared to stable con-
texts, which might be considered ‘safer’ (Fig. 3A). Relatedly, de Berker
et al. [54] found that perceived life stress (which is a risk factor for
depression) was predictive of how volatile, i.e. unstable, participants
perceived an environment in a laboratory task. This relationship could
suggest that life stress is the result of living in volatile or unpredictable
environments. Or alternatively, the causality might be the other way
around and perceiving one’s environment as more volatile than it ac-
tually is, may cause chronic stress. Of course to establish causation,
future longitudinal studies are needed. Neither of those potential ex-
planations has so far been tested in the context of depression.

The quality of learning can also be captured by parameters other
than the learning rate. In environments with interfering information
such as distractors or when learning about multiple things simulta-
neously, it might be most important to learn robustly without

Fig. 2. Describing learning and decision-making
using computational models.
A) Schematic of a task examining simple learning.
On each trial, participants are presented with dif-
ferent options amongst which to choose. They try to
choose the option that is more likely to lead to a
reward. Once they have made a choice, they either
receive a reward or not. Based on repeated trials,
participants try to learn how likely each stimulus is
to lead to reward. B) This behaviour can be described
with a simple learning model. In the simplest kind of
model, there are two free parameters for each
person, the learning rate (α) and the inverse tem-
perature (β): The model learns, i.e. updates its pre-
dictions, on each trial based on the difference be-
tween the outcome (reward or no reward) and the
expected outcome (probability of reward), i.e. the
reward prediction error (PE). The learning rate (α)
determines how quickly predictions are updated
based on prediction errors. Based on these predic-
tions, the model then chooses between the options
based on a softmax decision rule, i.e. the model does
not always pick the option with the higher value, but
only chooses that option with a certain probability
(for more information see section ‘Decision-making:
choice stochasticity’). How stochastic the choices are
is determined by the stochasticity parameter, com-
monly called the ‘inverse temperature’, β (the term
derives from the thermodynamics: at lower tem-
peratures (i.e. higher ‘inverse temperature’) particles
move less. Translating this to human behaviour, the
higher the inverse temperature, the less random
participants’ behaviour). This model can then be
fitted to participants’ behaviour. This means that for
each participant we determine the value for the ‘free’
parameters α and β for which the model most closely
matches participants’ choices. C) The effect of dif-
ferent values for α and β in a deterministic task, i.e. a
task in which the probability of reward is 100% for
an option (and the model chooses between this op-
tion and one with a known reward probability of
50%): The higher β (dashed lines), the more likely
the model is to consistently pick the option with

higher value so that eventually only the better option is chosen; in contrast, for a lower β (continuous lines), the model continues to select the lower value option from time to time even
once it has learnt the value of the better option. The higher α, the faster the model starts to prefer the better option. In this deterministic task, higher α is always better. D) This effect of β
can also be illustrated by plotting the probability of choosing one option over the other as a function of the value difference between the two options. β is reflected in the slope of this
curve, the higher β, the steeper the slope. D) The predictions learnt using different learning rates in a probabilistic task, i.e. when the stimulus only gives a reward on some trials (75%
reward probability for trials 1–50 and 25% for trial 51–100, black line). Now, having a very high α (yellow) is no longer advantageous because random reward omissions (e.g. at trial
30–31) quickly pull beliefs away from the true probability. In contrast, a lower α (blue) means that beliefs are more resistant to random reward omissions. Therefore when the
environment is noisy, it is more optimal to integrate information from past outcomes over a longer period, rather than relying only on the most recent observations. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article).

J. Scholl, M. Klein-Flügge Behavioural Brain Research 355 (2018) 56–75

59



interference. To illustrate this, in the above example about learning
how much you enjoy social encounters, imagine learning about how
much you enjoy meeting your friends, while at the same time learning
about how much you like the new pub and how much effort it was to
get to the pub. It is clear that in this situation learning will be made
more difficult by distractions that compete for processing resources.
However, learning could be improved by increasing the neural strength
(‘representation’) of the relevant learning signals. This would ensure
that you can learn what you are intending to learn without being dis-
tracted; in other words, learning could be improved without having to
change the learning rate. We measured this ability to selectively learn
from the relevant feature in a study in which participants needed to
learn how much monetary reward was associated with different stimuli.
While doing so, there were several sources of interfering information
([56], Fig. 3B). We found that a selective serotonin re-uptake inhibitor
(SSRI, citalopram) commonly prescribed to treat depression boosted the

relevant neural learning signals and enabled participants to learn better
in the face of interference. Of clinical relevance, finding increased
neural learning signals supports the hypothesis that one way in which
antidepressants act is by increasing learning or relatedly brain plasticity
[57]. One future avenue might be to test whether early changes in
plasticity can be predictive of treatment effects after weeks or months,
thus helping to better tailor treatment to patients with potentially dif-
ferent combinations of symptoms of depression.

2.3. Attributing outcomes – the role of attention in selecting candidate
causes

The learning scenarios considered so far focused on learning the
strength of association between a single candidate cause and an out-
come. However, in ecological situations, there is often more ambiguity
about what even constitutes a potential candidate cause or more

Fig. 3. Environmental context and adaptive
learning.
A) Effects of different simulated learning rates (α) on
learning in stable (trials 1–120) or volatile (trials
120–270) environments. In stable environments,
lower α (blue) results in predictions closer to the true
underlying probability of a stimulus (black) and
predictions that are less affected by random reward
omissions. In contrast, in unstable environments,
lower α leads to predictions lagging behind the
quickly changing underlying probabilities, while
higher α (red) leads to predictions that track the true
probabilities more closely. Behrens et al. [51]
(bottom left) found that indeed human participants
modulate their learning rate, learning more slowly in
stable environments and faster in volatile environ-
ments. Browning et al. [53] (bottom right) found
that this ability to adjust α between volatile and
stable environments was related to trait anxiety with
more anxious participants being less able to adjust
their learning rates. B) We [56] designed an experi-
ment to measure whether serotonergic anti-
depressants, that have been proposed to increase
plasticity in animal models, also improve learning in
humans. In the task (here simplified to the relevant
features), participants repeatedly chose between two
options based on their reward and effort magnitudes,
which had to be learnt from experience. Neurally,
the antidepressant increased learning signals, i.e.
prediction errors, for both reward (left, red) and ef-
fort (right, blue). Importantly, participants had to
learn different dimensions (reward and effort) si-
multaneously which meant that they could interfere
with each other, thus making learning more difficult.
Therefore, learning well could mean learning more
robustly, i.e. being less affected by interference. In-
deed we found that compared to placebo, anti-
depressants increased how well participants could
learn (i.e. use prediction errors to guide future
choices), when there was more interference. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article).
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broadly a relevant stimulus (Fig. 1). For example, if you did not enjoy
yourself in the company of friends, was it because your friends were
overly tired, because the pub did not serve good food, because you said
something wrong that upset everyone or because you wore a pink shirt?
Importantly, there are distinct brain mechanisms that enable us to se-
lectively attribute outcomes to the most appropriate causes in such si-
tuations.

The first step in this more sophisticated learning process is to
narrow down the number of possible causes (from thousands) to only a
few realistic ones based on ecological heuristics. This means ignoring
unrealistic causes completely (e.g. wearing a pink shirt should not in-
fluence how much you enjoy your friends’ company). However, even
using these heuristics, there may still be too many causes for the brain
to keep track of simultaneously. Therefore, further mechanisms are
needed to simplify the attribution problem. One is to selectively pay
attention to only a few possible causes at a time and mentally test hy-
potheses about them. That means gathering evidence for or against the
hypothesis that a cause predicts an outcome. This is done until the
hypothesis can be confirmed or disconfirmed, and another hypothesis
can be tested. There is indeed evidence that people focus attention on
likely causes and that this influences how outcomes are attributed
during learning [58–60]. Akaishi et al. [60] found, using computational
modelling, that people paid attention to one hypothesis at a time and
learnt selectively depending on whether this hypothesis was confirmed
or not. Beyond leading to a categorical selection of potential causes,
attention can also have more gradual effects (see the next section for a
fuller discussion): Leong et al. [61] measured attention by tracking
people’s eye movements, and found that participants deployed atten-
tion more to causes that seemed likely, and that participants were in
turn more likely to attribute outcomes to the causes in their attentional
focus.

There is ample evidence of attentional biases in depression, where
an increased attention to negative outcomes has been reported [62,63].
Relatedly, mood has been linked to the breadth of attention, i.e. to how
attention is spread over different stimuli rather than focused on a single
stimulus, with positive mood being linked to increased breadth of at-
tention [64–66]. Interestingly, breadth of attention has also been re-
lated to noradrenaline levels, approximated by measures of pupil di-
lation [67]. As noradrenaline levels are known to relate to stress, this
could suggest a neural substrate for how happiness or stress affect the
breadth of attention. However, it remains unclear whether these at-
tentional biases influence how patients learn to attribute outcomes to
causes.

2.4. Attributing outcomes – neural mechanisms

Having narrowed down the number of possible causes you are
considering at any one time, how does the brain correctly attribute
outcomes to their underlying causes? Specific component processes rely
on different specialized brain areas (see Fig. 4 for the anatomical lo-
cation of the brain areas discussed in the following sections). As those
component processes could lead to behavioural changes in unique ways
we will consider them individually below. The concept of component
processes is of particular relevance when considering the heterogeneity
of psychiatric disorders because certain processes could be affected by a
disorder but others left intact; and different subtypes of a disorder could
affect different component processes.

Distributed neural networks can process and keep online the re-
levant pieces of information or relevant dimensions of an outcome that
determine its value: First, the reward identity needs to be processed.
This could be the broader category of reward (e.g., a social reinforcer or
food item) or its specific characteristics (e.g., salty or sweet). For in-
stance, when processing food rewards, outcome identity is encoded in a
region of prefrontal cortex, namely the posterior and medial region of
OFC [68,69]. Second, it is important to keep in memory what potential
causes or stimuli are currently relevant, when those do not appear at

the same time as the outcome. To date, our knowledge of such re-
presentations is limited, but a recent study found evidence for stimulus-
specific memory traces in the same sensory areas that initially pro-
cessed the potential causes in the experiment [70]. Third, a re-
presentation of the strength of the association between the candidate
causes and outcomes to be updated needs to be stored; there is evidence
that the hippocampal memory systems [71] and more lateral OFC
(lOFC) [69] keep track of this information. To make correct attribu-
tions, all these different mechanisms need to work together. Different
lines of evidence suggest that integration of these different pieces of
information happens in lOFC. When this area is lesioned, monkeys
[72–74] and humans [75] no longer attribute outcomes to the correct
causes. Additionally, fMRI studies have shown that during the learning
process, lOFC is active when specific attributions are made [71,76–79].
Using a more complex design with many possible causes (see Fig. 5A for
detailed explanation), Jocham et al. [79] found that people in whom
lOFC is more active during learning are better at making correct attri-
butions.

Knowing which causes and outcomes to consider generally, the next
question is how much of the outcome to attribute to each cause. To
return to the example of figuring out why you enjoy socializing, ima-
gine one day there is a new person present. If everything else is the
same, and you feel different, it would seem most likely that this change
in your feelings is attributable to the new person. In other words, a good
heuristic is that surprising outcomes are more likely to be due to causes
that you are uncertain about or know less about (e.g. because they are
new) than by ones you are familiar with. We can quantify this intuition
in mathematical terms as uncertainty about how a cause and an out-
come are related. That people indeed use uncertainty to guide attri-
butions has been confirmed in a recent study using a novel design ([80],
Fig. 5B). Participants had to learn to attribute outcomes to causes with
different causal uncertainty. Neurally, the computation of uncertainty
was linked to a region in the prefrontal cortex, namely the ventrolateral
PFC (vlPFC). It is interesting to note the potential parallels between this
gradual effect of uncertainty on learning and the gradual effects of at-
tention [61] and environmental volatility [51,52] discussed above.
These quantitative effects whereby a potential cause is given a stronger
or weaker weight in predicting an outcome stand in contrast to more
categorical selection effects where some potential causes are completely
disregarded so that outcomes will not at all be attributed to them.

Interestingly, completely independently from the above mentioned
line of research, faulty attributions have been proposed as a key me-
chanism in the development of depression [81,82]. Questionnaire-
based studies have found that patients with depression or healthy
people who later go on to develop depression are more likely to attri-
bute negative events to themselves rather than external causes, com-
pared to healthy controls [81–87]. However, results from experimental
studies have been less clear-cut ([88–92] and [93] for a review). It is
therefore currently not possible to conclude that the attribution of
outcomes to their underlying causes is a process that is generally im-
paired in depression. The application of new and more ecological
paradigms, such as the ones described here and in the next section,
could help to shed light on how the diverse mechanisms are affected in
depression.

2.5. Attributing outcomes – different strategies for different situations

The mechanisms for making attributions described above work well
when agents have an accurate model of the world, i.e. when they know
what the plausible causes are and what outcomes are important.
However, in the real world, it may sometimes not be possible to have a
precise model and one’s model may also be entirely wrong. For ex-
ample, if you do not even consider the possibility that the cause of your
friends liking you is because you are a nice person (and instead only
consider external causes such as them being polite), you can never learn
about your niceness. A solution to this problem might be to have
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concurrent learning mechanisms, some of which indiscriminately learn
about all possible causes that are present, without filtering out unlikely
causes.

Indeed, studies in which the lOFC – the region we described above
as being important for attributing causes based on a model – is lesioned
show that non-human primates can still learn, but that they use a dif-
ferent strategy [72,73]. Specifically, control monkeys associated out-
comes most strongly with stimuli that actually caused them (e.g. a
stimulus preceding an outcome in the same trial). In contrast, after
lesions, monkeys associated outcomes with stimuli that were tempo-
rally proximal to the outcome even if they could not have caused the
outcome (e.g. stimuli from previous or subsequent trials).

While such a strategy of learning by temporal proximity is not op-
timal if you have a model of the task, it is a good additional strategy in
many natural environments where it is often less clear which cause is
going to produce which outcome and when. Indeed, Jocham et al. [79]
found evidence that such a learning mechanism exists by changing the
task structure from one in which outcomes could be clearly associated
with previous causes (as shown in Fig. 3B; and which humans solved
using lOFC) to one in which it was not clear when in the past causes for
outcomes had occurred (i.e. when participants could not use a model of
the task; not shown). In the latter situation, humans changed their
learning and now associated outcomes with choices at varying times in
the past. This type of imprecise learning has been termed ‘spread-of-
reward’ and linked to the amygdala [78,79].

2.6. Selecting the appropriate learning mechanisms

We have considered how more complex learning may depend on
different kinds of brain mechanisms all operating together at the same
time. But learning with several independent brain systems in parallel
raises a new issue: How do you decide which one should guide choices?
For example, one system could tell you to choose stimulus A, while the
other one might favour stimulus B.

While this has not yet been studied for attributional learning, it has
been studied in the context of model-based and model-free learning. We
will not consider the task in detail − it has been covered in some ex-
cellent reviews [27,94–96]. In brief, in this task, there are also different

ways in which participants can learn, relying on a complex model of the
task (‘model-based’), or on simpler mechanisms (‘model-free’). Lee et al.
[97] proposed that one way to decide which system should be used to
drive choices would be to monitor how reliable the knowledge of either
system is. To examine this, they manipulated how well different parts of
their task could be solved by each of the systems. They found that the
signature of this process of assessing the reliability of each system was
associated with activity in a distinct area of prefrontal cortex, namely
the vlPFC and frontal pole. It may be important to note that while this
specific task and related versions of it [98,99] measures one form of
what is referred to as ‘model-based’ learning, there are many other ways
in which learning can be ‘model-based’ or in other words, rely on a
model of the task. As described above, for example, using a model of the
world to know what stimuli are potentially relevant, using a model of
how quickly the environment is changing to adapt the learning rate,
using uncertainty to adapt the learning rate, learning from fictive feed-
back [100,101], or finding out which learning mechanism is appro-
priate (as described here). This is important because these very distinct
forms of learning that are not ‘model-free’ rely on different brain me-
chanisms and are therefore likely affected differently by different psy-
chiatric conditions.

Unlike situations where there is ambiguity about which learning
mechanism is appropriate, there are situations where the model of the
world is clear and model-free learning is not appropriate. For example,
when meeting friends in the bar, it is clear that whether or not you like
the music should not inform your judgment of how much you like your
friends. However, if the music is emotionally salient (strongly driving
the model-free learning mechanism relying on temporal proximity
discussed above), it may be hard to ignore it. Model-free learning in this
context means that the pleasant feeling caused by the music spills over
to your judgements of your friends because the two events co-occurred
in time. In contrast, if you have an accurate model of the world (i.e. you
know that the enjoyment of the music cannot be caused by your
friends), you should not make this misattribution. How can the brain
deal with this kind of situation? We tested this in an experiment in
which participants had to learn to predict how much reward was as-
sociated with different stimuli [102] (Fig. 5C). In that experiment there
were also irrelevant, yet salient, rewards (like the music in the bar). We

Fig. 4. Overview of brain regions.
Schematic highlighting the subcortical and pre-
frontal brain regions most central for the learning
and decision-making processes discussed in this re-
view. The anterior cingulate cortex (ACC) is shown
in shades of blue with the dorsal sulcal portion
dACC/ACCs in dark blue and the ventral gyral por-
tion ACCg in light blue. The posterior aspect of ACCg
and ACCs is also referred to as midcingulate corext
(MCC) [236,237], the aspect curving around the
genu of the corpus callosum as perigenual ACC
(pgACC) and the most ventral portion as subgenual
ACC (sgACC). The frontal pole (FP, green) spans a
large area of cortex and can be subdivided into its
medial (FPm) and lateral (FPl) portion. Note that
these are the abbreviations used throughout the re-
view but there is not always consistency in the lit-
erature (for example, what we refer to as central
orbitofrontal cortex (cOFC) has sometimes been re-
ferred to as medial OFC (mOFC) as well).
(vmPFC= ventro-medial prefrontal cortex;
dmPFC=dorso-medial PFC (includes pre-SMA);
lOFC= lateral OFC; vlPFC= ventrolateral pre-
frontal cortex; VS= ventral striatum;
Amy=Amygdala). For more detailed maps see
[237–241]. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the web version of this article).

J. Scholl, M. Klein-Flügge Behavioural Brain Research 355 (2018) 56–75

62



found that indeed, people were biased by these rewards and mis-
attributed them to the stimuli, even though the optimal behaviour
would have been to completely ignore them. Such a bias may exist
because many brain areas are sensitive to reward [103]. On the other
hand, we also found a network centred on the frontal pole which en-
coded signals that suggested it was trying to compensate for this bias.
The frontal pole increased its representation of the relevant information
when the salient information needed to be ignored, while also produ-
cing a signal driving behaviour to overcome the bias. In other words,
when an irrelevant reward experience biased participants to choose one
option, this brain area would produce a signal to change participants’
preference towards the other option. These findings are in agreement
with studies of emotional control during decision-making ([104–106],
Fig. 5D) and with findings showing that lesions of this area and nearby
areas in humans lead to misattributions of outcomes to irrelevant

dimensions [107]. Thus, in situations in which it is clear what brain
mechanism should guide behaviour, the brain not only selects the most
relevant mechanism, but actually over-writes, or counter-acts, learning
from other inappropriate mechanisms. It will be interesting to in-
vestigate in the future how psychiatric disorders affect the abilities to
flexibly arbitrate between different learning systems and to suppress
inappropriate learning mechanisms.

2.7. Building beliefs about the world

So far, we have focused on diverse mechanisms for learning the
reward value of stimuli. Another important aspect in naturalistic en-
vironments is of course learning about the structure of the world or, in
other words, learning a cognitive map. More specifically, a cognitive
map has information about how different states in the environment

Fig. 5. Different mechanisms for making attribu-
tions.
A) Jocham et al. [79] designed an experiment to
assess how well people can attribute outcomes to
correct causes or instead make faulty attributions. In
the task (simplified here), participants were pre-
sented with a continuous stream of stimuli, each
appearing on the screen for 1.5 s. For each stimulus,
participants could either choose it for a small cost
(hand symbol) or ignore it. If participants selected a
stimulus it led to a reward (with a certain prob-
ability) after a fixed 3 s delay. This meant that in
between having selected a stimulus (e.g. orange tri-
angle) and receiving its reward, other stimuli ap-
peared on the screen. Thus, the reward could po-
tentially be misattributed to other stimuli that did
not cause it. Behavioural results (right) showed that
participants were mostly attributing outcomes to the
correct causes: they were most likely to select a sti-
mulus again that had appeared about three seconds
before the reward. However, they also misattributed
outcomes to causes that occurred just before the
outcome (1.5 s to 0s). B) Lee et al. [80] designed an
experiment to measure to what degree outcomes
were associated to different plausible causes, or in
other words how high the learning rate was for each
cue. They found that how the learning rate was split
amongst different cues depended on the causal un-
certainty: the more participants were uncertain
about whether a cue had caused an outcome, the
higher the learning rate for that cue. Neurally, they
found that ventrolateral prefrontal cortex re-
presented this causal uncertainty. C) We [102] de-
signed an experiment to assess how the brain avoids
misattributing salient, yet irrelevant, outcomes. In
the task (simplified here), participants repeatedly
chose between two symbols based on how much re-
ward and effort was associated with each stimulus. In
addition, there was also salient, but irrelevant, out-
comes not dependent on participants’ choices,
namely whether the amount of reward from the
current trial would be paid out as monetary reward
(green tick) or not (red cross). Behavioural analyses
(bottom left) revealed that participants’ choices were
mostly guided by the relevant dimensions (i.e. re-
ward and effort amounts on the past three trials (t-1

to t-3)). However, they also misattributed the irrelevant outcomes: they were biased to choose an option again if it had led to a reward payout (red bar). This bias was potentially present
because many areas in the brain were sensitive to the irrelevant reward outcome (pink, top middle column). We found several signals in frontal pole (FP) that might suggest that this area
plays a role in overcoming the bias: FP carried a signal for the irrelevant reward payout and the people who had a stronger FP signal were less biased (bottom middle column).
Additionally FP increased its representation of the information to be learnt (amount of reward and effort outcome) when reward was paid out thus potentially helping to overcome the
bias (right column). D) Volman et al. [104] tested whether FP also plays a role for overcoming automatic emotional biases during approach-avoidance decisions in social contexts. On
each trial, participants had to make an approach or avoid decision (i.e. move a joystick towards or away from themselves) after a very brief presentation (100ms) of a happy or an angry
face. Half of the actions were reflexive/automatic (i.e. approach-happy and avoid-angry) and the other half controlled (i.e. approach-angry and avoid-happy). Disruptive transcranial
magnetic stimulation (TMS) over FP changed blood flow in bilateral FP. At the same time, TMS also selectively increased the rate of errors in the controlled condition. Interestingly, in a
separate study [106], the same authors found that in psychopaths with particularly high testosterone levels, activity in FP in the controlled compared to the automatic condition was
decreased. This suggests that maybe they are less able to control the impact of reflexive emotional information during rule-driven behaviour. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article).
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relate to each other and how different stimuli should be processed in
different states. For example, you can think of different ways to inter-
pret a friend ignoring you, depending on your internal model: you could
think ‘my friend does not like me’, based on a model, or a negative self-
view, made up of a whole range of connected statements such as ‘I am
worthless’ or ‘people don’t like me’. Or you could think ‘my friend
didn’t see me’, based on a different model that includes statements such
as ‘how other people act often has more to do with their state than with
me’. The states, with their specific cognitive content, in this kind of
model, directly relate to the concept of ‘schemas’ in psychiatry, which
have been used to explain aspects of depression. For example, Beck’s
theory of depression proposes negative schemas, i.e. sets of beliefs
about the self and the world and how they relate to each other, as a
problem in depression [108–110]. In this theory, people possess dif-
ferent schemas (e.g. ‘I’m great’ and at the same time ‘I’m a failure’) and
they can become active at different times. In depression for example,
stressors are thought to activate negative schemas that then shape

perception and action and thus trigger a depressive episode. A person
who had been depressed in the past may possess the same schemas but
they would lie dormant.

Neurophysiologically, the vmPFC/mOFC system (Fig. 4) has been
related to hidden states and inferential models, i.e. schemas that de-
termine how to process stimuli, or a cognitive map that can be searched
through or employed in simulations [111–115]. For example, Schuck
et al. [115] designed a task in which participants needed to make de-
cisions about stimuli based on a model of the task, i.e. knowing the
different task states that they had previously learnt (e.g. is feature A or
feature B of the stimulus relevant for your decision?). To make the
decisions, they needed to infer which (hidden) task state was currently
relevant. This information was represented in vmPFC/mOFC, thus
supporting the view that this region has a mental model/map. As an
aside, we also note that this is not the only type of mental model and
other research has highlighted the dorsal anterior cingulate cortex in
the context of learning the structure of the world and using this

Fig. 6. Different brain valuation systems.
A) Illustration of a simple binary choice task that
assesses valuation processes when assigning value to
stimuli (e.g. abstract shape, top) or actions (e.g.,
right or left hand, eye or joystick movement,
bottom). In some paradigms information changes
over time but it is also possible to vary the properties
of the visual stimulus to signal the expected outcome
which requires evaluating new information. For ex-
ample, the colour and quantity of symbols might
denote the juice type and quantity of juice as in [68].
B) Encoding associations between stimuli and re-
ward relies on central orbito-frontal cortex (orange;
red is irrelevant here). Here this was shown using
repetition suppression [69] which provides a way to
study neural representations using human neuroi-
maging [242]. C) In contrast, the anterior cingulate
cortex (ACC) is critical for using action-outcome as-
sociations to guide choice as shown here using le-
sions in macaque monkeys (shaded areas show le-
sions in OFC and ACC sulcus respectively; adapted
from [117] and [138]). D) When both actions and
stimuli are relevant for guiding choices, interactions
with several valuation networks take place (interac-
tions with parietal cortex when actions are relevant
(blue: striatum) or stimuli are relevant (orange:
OFC)). Adapted from [148]. E) Sometimes, new in-
formation elicits reflexive changes in value. In the
Pavlovian-Instrumental-Transfer (PIT) task [169],
participants first learn whether or not to approach
visual stimuli (triangle) to obtain reward and avoid a
punishment (in separate blocks, participants had to
learn whether or not to actively withdraw from a
stimulus to get a reward and avoid punishment; not
shown). In the second stage, they passively view
several Pavlovian stimuli (fractal) followed by tones
predictive of wins or losses (−100, −10, 0 10, 100).
In the test phase, the measure of interest is how the
Pavlovian stimulus (fractal) affects decisions about
whether or not to approach/withdraw from the
previously learnt instrumental stimuli (triangle). No
outcomes are shown in this phase. F) The optimal
behaviour would be to ignore the incidental Pavlo-
vian stimuli. However, the pattern usually observed
in healthy controls is that in approach blocks (top
left), participants are more likely to approach the
instrumental stimulus if the Pavlovian stimulus in
the background has a higher positive value than if it
has a negative value. The opposite behaviour is seen
in avoid/withdrawal blocks (top right). This rudi-
mentary response was absent in depressed patients

(bottom) (adapted from [175]). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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knowledge to explore the environment [116–126]; but this is beyond
the scope of this review.

While there are intuitive links to be drawn between mental maps of
the sort studied in these experiments and the schemas invoked in the-
ories of depression, the kind of paradigm described above has not yet
been used to test whether depressed and healthy controls differ, for
example, in how flexibly they can shift between different task schemas
or whether they have biases towards certain kinds of schemas.

3. Valuation and decision-making

3.1. Using new information and integrating multiple sources of value

Thus far in this review, we have focused on different learning me-
chanisms and on how they might influence our choices. Yet, in ev-
eryday life, to guide behaviour we often need to integrate learnt in-
formation with newly perceived information (Fig. 1, left-hand side). To
illustrate this, in the example about enjoying the company of your
friends, imagine deciding whether to go out for dinner with them. This
not only depends on how much you have recently enjoyed their com-
pany, but it may also depend on what the restaurant has on the menu
today, the cost of the food or your appetite. Here we will first focus on
the valuation of new information, and the integration of costs; the de-
cision process will be covered later in this section. Studying valuation
processes is of great importance for psychiatry, as patients commonly
have motivational problems in specific contexts, possibly because they
do not value them appropriately. For instance, lack of energy or fatigue
is a core symptom of depression [127] and this may impact on choices
requiring physical effort, e.g. deciding to spend energy to get to the
restaurant, but not other types of choices. Furthermore, different brain
regions process different types of value information. This, in turn, may
mean that different groups of patients, with different underlying pa-
thology (e.g for depression see [128]), experience differing types and
degrees of impairment depending on the nature of the valuation pro-
blem probed by a given task.

3.2. Not all value is equal

It might be tempting to think of value as being one singular currency
that predicts a person’s preference. However, there is now ample evi-
dence to show that the brain contains multiple valuation systems
[129,130]. Broadly speaking, the value of an outcome will be re-
presented in the brain regions that process the information the value is
constructed from (Fig. 6A–D). For example, evaluating a food item in-
volves processing its taste, visual appearance and smell, and these
sensory inputs converge in the central orbitofrontal cortex (cOFC,
Fig. 4) [131], a region critical for processing the value of food items. In
experiments, a reward is often predicted by a visual cue displayed on
the screen (a Starbuck’s sign might make you think of coffee) and
evidence from lesion, recording and neuroimaging studies demonstrates
cOFC’s essential role in representing multiple dimensions of stimuli
such as the associated food type or value (Fig. 6B) [68,69,132–140]. In
contrast, an outcome can also be predicted as a result of performing a
certain action, rather than from a visual or sensory cue. For example,
finding out whether your best friend is coming along for dinner involves
picking up the phone, and thus assigning value to the result of an action
plan. Typically, in tasks investigating action value representations,
different actions, e.g. eye movements or joystick movements lead to
different amounts or types of reward. Evaluating rewards that are tied
to actions involves a different network of brain regions to the one de-
scribed above, including the dorsal striatum and anterior cingulate
cortex (ACC) [141–144]. Lesions to ACC impair choices guided by ac-
tion values (but not stimulus values) in macaques and human patients
(Fig. 6C) [138,145]. This is consistent with the connectivity profile of
ACC; it has much weaker sensory inputs than OFC but more direct
projections to premotor and motor cortices [146,147]. Compellingly,

when multiple attributes (e.g., actions and cues) are relevant for eval-
uating a choice option, interactions between several of the brain regions
we have discussed take place (Fig. 6D) [76,148]. Thus, where in the
brain new information is evaluated will depend on what the value is
assigned to (a food outcome, an abstract cue, an action etc.). This is
worth bearing in mind when designing tasks for specific patient po-
pulations, as they could manifest problems of value corresponding to
the functional circuit that is affected by their pathology. One type of
value we have not touched upon here but which may have great re-
levance for psychiatric disorders is the value of social information.
Many real-life situations involve several individuals and thus, it is im-
portant for tasks to manipulate social context and the type of social
information that needs to be processed. This is not covered here due to
space constraints (but see [149–151]).

So far, in depression, a range of valuation deficits have been re-
ported but overall the conclusions have been quite mixed [152,153].
Basic tests such as the sucrose liking test [154,155] show no difference
between healthy controls and patients suffering from depression. Si-
milarly, ratings of cartoon images with emotional content were found to
be unchanged in depression [156] and a recent study deploying a
computational model to assess valuation of gambles in the absence of
learning found no difference between patients suffering from depres-
sion and controls [157]. By contrast, other studies have found reactions
to emotional stimuli to appear blunted in depression. For example, sad
movies did not seem to trigger the same increase in sad feelings in
depressed patients as in controls [158]. While it was originally thought
that patients suffering from depression are overly sensitive to negative
feedback and show a catastrophic response to failure [159,160], a more
recent study suggested instead that there might be a diminished sen-
sitivity to emotionally negative information which leads to less ad-
justments in subsequent behaviour, meaning unlike controls, patients
would not correct their performance as much after error feedback
[161]. Evidence from a meta-analysis including a wide range of mea-
sures (self-report, behavioural, physiological) suggest that this reduced
response to emotional stimuli is present in both the positive and ne-
gative domain [162]. Still, overall results have been mixed which could
be related to several reasons. These include the particular valuation
system probed by a task, the large variety of biotypes of depression
[128], or alternatively, the way participants ‘report’ value. For ex-
ample, studies relying on reflective valuation processes (e.g. when
participants give ratings or make deliberate choices [156,157]) may
recruit different brain systems than those relying on automatic valua-
tion processes (e.g. approaching or avoiding; see next section). All of
these are open questions that will need to be addressed by future work.

3.3. Reflective versus automatic valuation

There are not only different types of value for e.g. actions and sti-
muli, but also differences in terms of cognitive accessibility [163]. The
valuation processes discussed thus far are largely ‘reflective’ in the
sense that they involve thinking about and imagining possible out-
comes, as well as considering which cues are relevant for achieving the
outcomes. The goal of this reflective process is to act in a goal-directed
way. However, sometimes a new piece of information elicits a more
automatic, and thus less controlled, change in value. If, for example, a
spider unexpectedly walked across the restaurant table when you are
out with your friends, you may not enjoy your food as much. Con-
sidering this situation from the perspective of reflective (or model-
based) reasoning, what has gone wrong here is that – assuming the
spider disappeared again and there is no action you currently need to
take – the stimulus (the spider) is irrelevant to your current task
(eating) and should therefore not influence your choices. While this
situation illustrates that it is not always appropriate for values to be-
come active and influence behaviour, these types of automatic influ-
ences on behaviour are ubiquitous, raising the question as to why this
would be. As considered in depth in previous reviews [94,96,163,164],
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the advantage of automatic/reflexive systems is that they are compu-
tationally efficient, and therefore available more quickly, which can be
important in many real-life situations. For example, if a bear is ap-
proaching you, running away quickly out of fear is more adaptive than
carefully considering how likely it is that the bear will hurt you. One
way in which automatic influences on valuation can be studied is in
tasks measuring approach and avoidance tendencies either without
([104], Fig. 5D) or with a learning component [165]. These approach/
avoid decisions recruit a network centred on amygdala and subgenual
ACC (sgACC) [166], a prefrontal region with a high density of amygdala
inputs [167], for review, see [168]. Reflexive influences on behaviour
can also be measured using Pavlovian-Instrumental-Transfer (PIT) tasks
where an incidental appetitive or aversive Pavlovian cue that is irre-
levant to the task at hand (e.g., the spider) increases the likelihood to
approach or avoid another stimulus (e.g., your food), respectively [169]
[e.g., 169] (Fig. 6E). In both types of tasks, there is a strong link be-
tween valuation and action and the effect of the incidental cue is
measured in terms of action (approach/avoid). Interestingly, the brain
networks driving the influence of Pavlovian cues on value and beha-
viour are primarily phylogenetically older structures, in particular
striatum and amygdala [170–173]. Automatic valuation signals have
also been identified in neo-cortical regions such as vmPFC (e.g.
[102,174] (Fig. 5)). Altogether, this suggests that the strength of a re-
flexive bias (or value) is encoded separately from the action that it

biases.
Reflexive valuation mechanisms and their interaction with more

reflective systems are of particular interest for psychiatry, and they
might relate to aspects of cognitive therapy. Huys et al. [175] used a
PIT task to examine how Pavlovian cues influence valuation in de-
pression (Fig. 6F). In healthy participants, a positive incidental cue
promoted approach and a negative incidental cue promoted avoid re-
sponses, respectively. However, this rudimentary response was absent
in depressed people. As the authors pointed out, one potential con-
sequence of this might be that in depression approaching a positive or
avoiding a stressful situation might rely on more computationally ex-
pensive (‘reflective’) neural mechanisms and thus feel more effortful. If
this is the case then it may begin to explain some of the symptoms of
depression such as anhedonia and increased exposure to stressful live-
events. Future studies could build on this work to test the idea that in
depression Pavlovian approach-avoid tendencies are reduced, using for
example a recent task proposed by Bach and colleagues [176] where
Pavlovian impulses for approaching and avoiding produced helpful
behavioural responses rather than unhelpful behavioural biases as in
PIT tasks. Overall, it seems that in depression the interaction between a
more automatic and a more reflective valuation system are off-balance,
with a reduced influence of more automatic valuation mechanisms
[175]. In line with this, lowering central serotonin levels using acute
tryptophan depletion had similar effects, reducing approach/avoid

Fig. 7. Mechanisms for integrating costs into value.
A) Illustration of binary choice tasks involving dif-
ferent types of costs. In all cases, choices are made
between two options, A and B, associated with
varying quantities of a monetary or food reward
(displayed or pre-learnt). Importantly, the reward
comes at a cost which could be the ‘risk’ associated
with winning the reward (varying probabilities, top),
the physical effort that needs to be exerted to obtain
the reward (e.g., grip force, middle), or the delay
before which the reward will be received (bottom).
B) To model the integration of costs and benefits into
subjective value and capture an individual’s discount
preference – e.g., how much the subjective value of
an option with a fixed reward decreases as a function
of different cost levels − simple behavioural models
are used. The parameter(s) fitted for each individual
explain how the value of reward decreases with in-
creasing costs. Top: for probability, prospect theory
provides the standard model accounting for the over-
weighting of small and under-weighting of large
probabilities that most individuals exhibit
[243–245]; middle: for effort discounting, the best fit
is achieved using an initially concave function, for
example an inverse sigmoidal (shown here) or
parabolic/quadratic function (not shown) [246,247];
bottom: for delay discounting, a convex hyperbolic
model is appropriate [248,249]. The different shapes
of the discounting functions suggest that different
types of costs affect choices differently: for example
the concave shape for effort discounting meant that
people care not much about whether they have to
make a small effort or no effort, but they care more
when the choice is between a small and a medium
effort. In contrast, for delays, people will care about
whether a reward will be paid out immediately or
only in an hour, but they care less about whether
reward is received in three weeks, or three weeks

plus an hour. Having a model of subjective value provides several critical advantages. First, it provides sensitivity to inter-individual differences. Second, it can be used to capture the
influence of cost in situations involving more than one relevant variable. Third, fitted parameters can be used to examine relationships with other behavioural or clinical markers. Finally,
neuroimaging data can be explained in ways that would otherwise not be possible, for example by looking at the representation of value difference as a marker for choice. C) Three
exemplar studies looking at the encoding of value (i.e. the difference in value between the chosen and unchosen option; red: activation; blue: deactivation) for the three different types of
costs (top: probability; middle: effort; bottom: delay). This highlights distinct networks depending on the type of cost (red), while the inverse contrast is consistently encoded in dmPFC
(blue). Adapted from [101,185,189]. D) The effort (here grip force) exerted to get a reward scales with expected reward (x axis) in controls but not depressed patients. Adapted from
[199]. E) Participants performed a task where they accept or reject a reward given the required effort. A model captured each individual’s effort sensitivity, or in other words, how much
weight they placed on the effort in their choices. This parameter was directly related to an individual’s apathy trait with higher apathy relating to higher effort sensitivity. Adapted from
[197]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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behaviour, yet only in the aversive domain [177]. And when deciding
whether to approach or avoid an outcome, stimulation in a ventral zone
of sgACC induced depressive phenotypes (negative biases) and altered
approach/avoid type choices but not choices between two options
[166]. All of these findings are particularly interesting given depression
is associated with structural and functional brain changes in the
amygdala, ventral striatum, and sgACC [sgACC; 43,161,178–181]. In
other words, both neurophysiological and behavioural evidence point
towards reduced use of reflexive value and increased reliance on re-
flective computations, which could together reduce motivation and
lead to rumination. In related work, Eldar et al. found that people with
high mood instability (a risk factor for bipolar disorder), valued
monetary rewards differently as a result of an incidental event (large
win or loss) that affected their current mood [182,183]. Specifically,
participants had to learn how likely different slot machines (i.e. stimuli)
were to give rewards. After learning about half of the slot machines,
participants experienced a large win or loss in a wheel-of-fortune draw,
which affected participants’ mood. However, whether they won or lost
was not related to the next set of slot machines that participants sub-
sequently went on to learn about. Despite being aware of this, partici-
pants with high mood instability behaved as if the slot machines after a
large reward were better than the ones after a large loss. This is another
example of automatic processes interfering with goal-directed pro-
cesses.

3.4. Integrating costs and benefits

So far we have focussed on the valuation of rewarding outcomes, or
benefits, and aversive outcomes, such as losses. However, in natural
environments, valuation processes frequently entail an integration of
costs and benefits. The types of costs typically encountered include
temporal delays (e.g., having to wait for your friend to pick you up),
motor costs (e.g., having to walk to the bus stop), and risks (e.g., getting
caught in a traffic jam). Tasks looking at how a given cost affects the
evaluation of a rewarding outcome usually offer participants two op-
tions that are each associated with different levels of cost and reward
(Fig. 7A). Alternatively, sometimes only one option varies in reward
and cost and another option stays constant across trials (‘default’) (for
effort costs see e.g. [184–186]). Simple behavioural models can be used
to capture an individual’s propensity to be influenced by a given type of
cost and the most commonly used examples of such ‘discounting
functions’ are shown in Fig. 7B.

The brain networks recruited to encode and integrate different types
of costs again differ depending on the type of information that needs to
be processed. For instance, the vmPFC encodes information about
subjective value when probability (i.e., risk) and magnitude need to be
integrated to evaluate an option (Fig. 7C, top) [e.g.,101,187]. When
evaluating whether a reward is worth waiting for, a similar but some-
times slightly more dorsal and posterior perigenual ACC (pgACC/
vmPFC) region encodes subjective values [188–190] (Fig. 7C, bottom).
By contrast, when physical energy is necessary to obtain an outcome,
more dorsal regions in ACC/MCC, with more direct projections to
premotor and motor cortices, are essential for encoding the integrated
cost-benefit value (Fig. 7C, centre) [102,117,185,191–197].

Valuation deficits in depression may possibly be found most con-
sistently when physical effort is involved. In other words, when there is
a need to energize behaviour through self-motivated actions and thus
express how much it is worth working for an outcome. For instance,
going out with your friends requires mobilizing some energy to get to
the restaurant. Unlike in some of the domains of learning and valuation
covered above, there is converging evidence that this process might be
altered in depression, and many symptoms of depression, such as lack
of energy, fatigue or decreased engagement in activities, relate to this.
For instance, healthy controls produce more effort for higher reward
incentives, but depressed individuals show overall reduced levels of
effort production [198] and no scaling of effort with expected reward

size ([156,199], Fig. 7D). This nicely dissociates liking an outcome from
being willing to produce motivated behaviour to obtain it. Changes in
the willingness to exert effort for reward are also seen in patients suf-
fering from apathy ([200,201], Fig. 7E), and apathy has been found to
be strongly associated with symptoms of depression in a large online
cohort [47]. Several things about the existing work on effort in de-
pression are striking. First, it remains quite unclear where exactly the
deficit lies: in the mobilization of effort per se, the integration of re-
wards and costs, or some aspect of the reward itself. Second, it is un-
clear how specific this deficit is to physical, as opposed to other types of
costs, e.g. mental effort or temporal delay. Finally, and most im-
portantly, the effect sizes reported in laboratory studies are small
compared to the deficits observed in real-life (e.g., for energy loss see
[202]). This suggests that experimental paradigms need to better cap-
ture the complexity of real-life situations, and combine this with careful
computational modelling. For example, many real-life decisions are
about whether to continue with a default behaviour or make an effort to
look for alternatives (e.g. deciding to stop relaxing on the sofa to go out,
see Fig. 1B). Instead, the situation that is often encountered in labora-
tory tasks is to face two concrete options (with explicit rewards and
efforts) to choose between (see also Fig. 9B).

3.5. Integration of different sources of value: the role of different
neurotransmitter systems

Another critical question for decision-making is how much to rely
on different types of value, for instance information we have learnt over
time in contrast to newly perceived information. For example, if a new
cook has started to work in the restaurant that your friends are taking
you to, your previous experience should influence your choice to go out
with them less. In addition to asking whether different brain areas
encode different types of value, there has been interest in whether
different neurotransmitters and neuromodulators influence how this
integration occurs. This is especially important for psychiatry as many
treatments are drug-based and involve particular pharmacological tar-
gets.

The neurotransmitter noradrenaline (NA), is a good candidate for
regulating how much to rely on learnt information (e.g., given past
experience, how likely am I to enjoy the time with my friends). In rats,
increasing the influence of NA on ACC activity and thus decreasing ACC
activity, caused animals to abandon prior knowledge, whereas silencing
NA had the opposite effect, making them more reliant on learnt in-
formation ([122], Fig. 8A). In humans, magnetic resonance spectro-
scopy (MRS) can be used to measure the concentration of the two main
excitatory and inhibitory neurotransmitters, glutamate and GABA.
Using MRS, we were able to show that the balance of excitation and
inhibition (E-I balance) in dACC regulates how much choices rely on
learnt versus newly perceived value information ([126], Fig. 8B).
Higher levels of glutamate and lower levels of GABA were associated
with both increased strength of the value to be learnt in dACC and
increased use of learnt information over new information when making
choices. Taken together, these results suggest that the dACC plays a
crucial role in allowing information that has been learnt to influence
behaviour (see also section ‘Building beliefs about the world’), and that,
on a molecular level, this may be realised by regulating the E-I balance
which in turn is possible via the noradrenergic system. This is inter-
esting because the E-I balance can be altered in acute stress [203] and
when manipulating serotonin levels [204], as would typically be done
with SSRIs in depression. Some reports also suggests that glutamate/
glutamine and GABA levels, specifically in ACC, are reduced in de-
pression [205,206] but there is mixed evidence regarding this possibi-
lity [207,208]. It is therefore plausible that such neurochemical
changes could affect how different aspects of value are integrated in
these patients. Indeed, we have recently made the observation that
patients with dysphoria use learnt information less, compared to new
information, when making decisions (unpublished).
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In addition to asking whether learnt (or other) value information
should be weighed more or less strongly when making a choice, it is
also important to think about how information is combined and how
this might be influenced by neurotransmitter levels. In other words,
how does the brain implement linear or non-linear combinations for
forming an estimate of integrated subjective value from, e.g. reward
and probability (see discounting curves for combining costs and bene-
fits in Fig. 7)? We tested this in another study ([209], Fig. 8C), and
quantified the degree participants relied on a linear or non-linear
strategy for combining values with a computational model. We found
that a partial NMDA agonist made participants rely more strongly on
the optimal non-linear strategy while choices in the placebo group were
guided predominantly by the simpler linear computation. This is in
agreement with previous findings that NMDA receptors facilitate non-
linear integration of information in e.g., multisensory integration
[210]. Our data suggests that this role extends to the value domain.
While in this study, the integration happened between learnt and newly
cued information, it is plausible that a similar mechanism of integration
might be recruited when several explicit cues need to be integrated non-
linearly to compute value – e.g., the delay and size of reward or effort
and size of reward.

3.6. Decision-making: choice stochasticity

The previous sections have focussed on mechanisms of learning, the
valuation of new information and integration of different pieces of in-
formation. In this section, we focus on the decision or selection process
itself. Indecisiveness, or a greater difficulty in making choices, is a core
symptom of depression (e.g., [211]). Depressed individuals tend to
avoid making decisions, show maladaptive decision-making, and

enhanced stress levels when making choices [212–216].
It seems straightforward that once the integrated values of different

choice options have been computed, for example the values assigned to
different options for spending your evening, the option with the highest
subjective value should consistently be chosen. This is not, however,
what is usually observed. For example, in a simple situation where one
option gives reward 80% of the time, and a second option only 20% of
the time, participant’s choices generally match these probabilities in
that option 1 is chosen 80% of the time. However, to maximise reward,
option 1 should be chosen 100% of the time. This raises the question of
where this randomness, or stochasticity, in the observed choices comes
from. Many different possible sources might contribute, such as the
desire to explore other options in case their value has changed; un-
certainty about underlying value estimates and the optimal way of in-
tegrating different aspects of value (covered above); priors that skew
values in one direction; and mistakes, for example due to distraction,
tiredness, carelessness. Below we will first describe how choice sto-
chasticity is usually accounted for in computational models before
discussing why it may provide an advantage in ecological settings.

When using computational models to explain participants’ choices in
tasks, it is important to account for choice stochasticity. This is typically
done by fitting a parameter, referred to as the softmax inverse tempera-
ture, for each participant which given the value of an option, provides an
estimate of the likelihood of choosing this option (Fig. 2B–D). Work using
MRS in humans has shown that the degree of stochasticity relates to the E-I
balance in the ventromedial prefrontal cortex, a brain region with a role in
comparing choice option values [217]. Relatedly, causal manipulation of
the E-I balance in this region (using depolarizing transcranial direct cur-
rent stimulation (tDCS)) leads to increasingly stochastic choices (Fig. 9A,
[218]). Both of these results make sense in the context of current models

Fig. 8. Molecular mechanisms for integrating information.
A) Top: Rats are playing against either an intermediate (C2) or a strong competitor (C3) who is trying to predict their choice between two food ports. Animals are only rewarded on trials
where the computer does not match their choice. The difference between the competitors is that the strong competitor is better able to detect any patterns in the animal’s choices and
exploit them. In other words, if there are any statistical regularities, i.e. if the rats’ behaviour is predictable, the competitor will use this information to prevent the rats from getting
rewards. Bottom: Playing against a stronger competitor leads to more random choices (decreased choice predictability). Inactivation of anterior cingulate cortex (ACC) using a GABA
agonist produces increasingly random choices in rats playing against C2, but not in the rats playing against C3 who already exhibit strongly random choice behaviour. This effect is
mediated via noradrenergic (NA) input from the locus coeruleus (LC) onto ACC because the same effect is observed when LC inputs to ACC are stimulated pharmacologically or
optogenetically. This suggests that the level of NA in the ACC controls the balance between using a model (trying to predict the opponent) and random choices. Adapted from [122]. B)
Magnetic mesonance spectroscopy (MRS) was used to examine the balance of excitation (glutamate) and inhibition (GABA) in the dACC when choices relied on learnt and explicitly cued
information. Top: A model parameter that captured how much participants relied on learnt relative to new information showed a positive relationship with Glutamate and a negative
relationship with GABA. Bottom: dACC encoded the information to be learnt and this signal increased as a function of the E/I balance in the region. Thus, consistent with [122], dACC
controls how much learnt information influences behaviour and this might be achieved by regulating its E/I-balance. Adapted from [126]. C) In a similar task, a partial NMDA agonist
made participants rely more strongly on an optimal non-linear strategy for combining different pieces of information to calculate integrated value (here reward probability * magnitude).
Choices in the placebo group were guided predominantly by the simpler linear computation (here reward probability+magnitude). Adapted from [209]. This suggests that NMDA
receptors play a role in non-linear integration of information.
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whereby the competition between several choice options is resolved via
mutual inhibition [219,220]. An increased concentration of GABA, and
decreased concentration of glutamate, would imply increased levels of
inhibition, a slower more precise comparison process and thus less random
choices [217]. By contrast, increased levels of excitation will make the
comparison process converge faster, thus generating more stochastic
choices [218].

Interestingly, despite a relatively good neuro-computational un-
derstanding of stochasticity in decisions and decision-making problems
being central to depression with obvious real-life problems associated
with it, there are few studies showing changes in choice randomness in
the lab, and most do not dissociate valuation from choice stochasticity
in depression. Some reports find increased reaction times in simple
binary choices in depression without changes in accuracy [221].
Changed reaction times could point at changed decision making as
current decision models make predictions about both choice and reac-
tion time patterns. This effect could, for example, be due to blunted
valuation, in essence, making the choice harder because values seem
more similar. However, if this is the case then decision-making should
also be less accurate in depressed patients but this is not the case.

Alternatively, if valuation is unperturbed, increased reaction times can
be achieved via increased inhibition/reduced excitation in the com-
parison process, but such changes would predict depression-related
improvements in accuracy, which are not observed either. Interestingly,
Huys et al.’s meta-analysis [46] reported reduced reward sensitivity in
depression by fitting computational parameters to a reward-learning
tasks. Because in the model, reward sensitivity could not be dissociated
from stochasticity per se, this provides evidence for increased decision
randomness in depression. In contrast, another recent study [157] that
used a decision-making task, based only on explicitly shown, rather
than learnt values, found no effect of depression on choice stochasticity.
Overall it thus remains unclear whether the decision deficits reported in
depression are truly deficits in the comparison process. However,
maybe instead of more fine-grained measurements of choices and re-
action times, we should start thinking differently about the reasons why
a decision-maker might not always choose the best option in the first
place. Such choices may not simply reflect stochasticity in the decision
mechanism itself but instead they may reflect the operation of distinct
goal-directed processes. In the next section we focus particularly on
mechanisms for exploration.

Fig. 9. Neural mechanisms underlying exploration.
A) Participants performed a binary choice task in
which the probability of reward had to be learnt
while reward size was cued on the screen.
Transcranial direct current stimulation (tDCS) tar-
geted the vmPFC, a region critical for comparing the
values of options when reward magnitude and
probability need to be integrated. Anodal tDCS is
thought to depolarize the underlying pyramidal
neurons thus causing a shift in the E/I balance to-
wards more excitation [250,251]. tDCS led to more
exploration (smaller softmax inverse temperature) in
agreement with predictions generated using a bio-
physical model (top). In contrast, learning (measured
as learning rate in the model) was not changed
(bottom). This dissociation would not have been
possible without a learning model and suggests that
the degree of exploration in this task is regulated via
the balance of excitation and inhibition in vmPFC.
Adapted from [218]. B) Example study in which choices
were not framed as being between options A and B but
between whether to engage with a currently present
option (or in other words a ‘default’) or to explore the
environment (i.e. search in the environment for other
opportunities). Studying the neural circuits underlying
this ecological type of choice revealed the dACC as the
key region representing the value of searching/ex-
ploring. Adapted from [8]. C) Choices between two
options are made and one of the options is consistently
better until the alternative increase in value (‘jumps up’)
at an unpredictable time (Leapfrog task). Exploratory
choices (i.e., checking whether the alternative has
changed) should become more frequent the more time
has passed since the last ‘jump’. Students with symp-
toms of depression were overall more exploratory (or in
other words less consistent in picking the option with
higher value, i.e. their behaviour was more random).
However, most importantly, a closer look at when the
exploration happened showed that depressed partici-
pants did not explore more on trials when exploring was
advantageous (to check for ‘jumps’) but instead they
explored more at times when exploiting would have
been the optimal behaviour. Adapted from [29]. D)
Wilson et al. [224] designed a task to measure whether
humans adjust how much they explored, depending on
how useful it was to do so. In each game of the task,

participants were presented with two slot machines. In the first four trials of each game they could not choose themselves which slot machine to play, but instead the computer selected an option for
them (‘forced choice trials’). Participants were only shown how much they won from the machine they played, not how much they could have won from the alternative. The key manipulation was
that after these forced choices participants were given either a single trial (‘horizon 1′) or six trials (‘horizon 6′) on which they could choose freely between the two slot machines (‘free choice trials’).
In horizon 6 compared to horizon 1, it was thus more valuable to gather information about which slot machine was better because more choices were left where this information could be exploited.
And indeed (bottom panel in D), participants were more likely, at the first free choice, to explore (and thus select the slot machine that had so far been less valuable) in horizon 6 compared to
horizon 1 (see also to Fig. 2D).
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3.7. Choice randomness in ecological environments enables exploration

It is important to consider why humans and animals would have
developed a natural tendency to produce stochastic choices. What
seems like suboptimal or noisy behaviour in simple laboratory settings
turns out to actually provide an advantageous behavioural strategy in
ecological settings, emphasizing once more the need for ecologically
valid task designs. For example, the probability matching behaviour
described earlier is the same as that found when an optimal Bayesian
model is supplied with ecologically valid prior beliefs, such as a prior
that events happening close in time are not unrelated [222]. Another
aspect of natural environments is that they are not usually stable in
terms of the outcomes predicted for a given choice. In an environment
where friendships develop or the cook can change, it is optimal to oc-
casionally explore the value of alternatives (e.g., how to spend your
evening) to maximise overall gain over the longer term [223]. Few
studies thus far have dissociated random choices from targeted ex-
ploration. However, Wilson and colleagues designed a task (‘Horizon
task’; Fig. 9D) that allowed dissociating random choice from purposeful
exploration and showed that humans explored more when it was more
useful to do so [224]. Furthermore, directed but not random explora-
tion was affected by transcranial magnetic stimulation (TMS) over right
frontopolar cortex [225] suggesting different neural systems support
the two types of exploration. Other work in which choices were en-
coded in a frame of exploring versus exploiting showed that dACC holds
a representation of the value of exploring the environment ([119,226],
Fig. 9B). Not only does activity in dACC change when exploratory
choices are made but when the outcomes of exploratory choices are
evaluated [120,227,228]. Choice stochasticity, or in other words un-
predictable choices, can also confer a critical advantage when faced
with an opponent who is trying to predict our behaviour, and in-
activation of rat ACC increases the degree of randomness ([122,229],
Fig. 8A). Designing tasks that make it possible to determine the degree
to which choice stochasticity is strategic, whether as a way of exploring
and refining the model of the world or to confuse a competitor may be
critical for understanding changes in decision-making in psychiatric
disorders.

To our knowledge, only one study so far has distinguished targeted
from random exploration in depression; this work does suggest that
depressed patients may show altered exploratory behaviour. Blanco
et al., [230] used the ‘Leapfrog task’ where the reward obtained from
two options can only ever increase over time (Fig. 9C). The inferior
option can jump up at unpredictable times, so that on a given trial the
choice is between exploiting what is thought to be the best option, and
exploring whether the previously inferior option might have exceeded
it. In this task, exploration should be structured, with an increased
likelihood of exploration as time since the last exploratory trial passes.
Indeed, the majority of control participants’ behaviour resembled such
a pattern, while half of the patients suffering from depression (and
particularly those with the highest levels of depression) lacked speci-
fically this exploration strategy. Interestingly, overall, depressed pa-
tients produced more choices that could be seen as exploratory, but on
trials when they should have exploited the current option. Thus, this
study nicely illustrates the importance of ecological designs and of
using behavioural models to better capture people’s behaviour, and
suggests that goal-directed exploration might be altered in depression.

3.8. Perils of the ecological approach and possible solutions

While we have tried to outline the various advantages of probing
cognitive processes with tasks that incorporate ecological features,
there are of course also some caveats that researchers need to be aware
of. One concern is the increased complexity of ecological tasks, which
may mean that a single behaviour (e.g. pressing a button) is now in-
fluenced by several different factors. This stands in contrast to more
classical designs where all but one factor are kept constant. The

question that arises in ecological tasks then is how to dissociate dif-
ferent cognitive processes and define their unique contributions. Here
we propose that this problem can be addressed by using computational
models of the processes recruited by a given task (see for example
[231,232] for an introduction). As one illustrative example, we can
consider a study on reinforcement learning in depression by Huys et al.
[46] (see also section on ‘basic learning processes’). The authors
showed that by using a computational model, a simple behaviour (i.e.
choices on each trial that could be summarized as proportion correct)
could be parsed into separate components, namely the speed of learning
(learning rate) and the choice stochasticity (Fig. 2). Then, the next
question that arises is about which model(s) to use. Choosing the right
model is critical and the usual approach would be to construct several
plausible models (e.g. in the example from Huys et al., models that
consider an absence of reward as a punishment) and then select the
model that best describes the data using model comparison [233]. Of
course, model comparisons are limited to selecting the best model out
of the models that are being considered and thus may rely on re-
searchers’ subjective choices. We can increase our confidence that we
have indeed found a ‘good enough’ model by including model simula-
tions, i.e. by letting the different models that have been fit to behaviour
perform the same task as the participants. Then, we can check that the
simulated behaviour captures key features of interest found in the be-
haviour of real participants [234] and that this is only the case for the
model of interest, not for alternative models [235]. In general, the
problems of complexity and model selection can be managed by in-
creasing the sophistication of tasks gradually, by building on previous
work, and by carefully defining the key cognition of interest in the first
place.

Another source of concern might be the interpretation of findings
obtained using more ecological tasks. As we have tried to illustrate,
umbrella terms such as ‘learning’ often capture a range of different
cognitive processes. Importantly, these processes can be described very
precisely with separate parameters in a computational model, and thus
computational modelling usually aids the interpretation of findings in
more sophisticated tasks. For example finding that anxiety changes how
well the learning rate is adjusted to match the environment should not
be interpreted as a ‘general learning deficit’ (see section ‘Environmental
context and adaptive learning‘).

Given these caveats, it is clear that great care needs to be taken
when designing and analysing experiments with ecological features and
computational models. Fortunately, the field of computational neu-
roscience is moving towards open science, which we believe will ac-
celerate the progress that can be made. It will enable direct access to
resources, such as the code for a particular model and source data that
can greatly aid replication and re-analysis.

4. Conclusions

In this review, we have argued that our understanding of learning
and decision-making, in particular in the context of psychiatric dis-
orders, could greatly benefit from considering tasks that probe more
ecological features. Indeed, studying learning and decision-making in
ways that capture aspects of naturalistic environments has started to
reveal distinct cognitive processes that rely on different neural sub-
strates, which would not be recruited in simple tasks. This diversity also
highlights that generic umbrella terms such as ‘learning’ encompass a
large variety of distinct and only partly overlapping neural processes.
Thus, symptoms of psychiatric disorders may only emerge when
probing the specific mechanisms that are also recruited in naturalistic
scenarios relevant for the disorder under consideration. It is therefore
essential to use tasks that incorporate ecological features and that are
specifically designed to target the process of interest (Table 1). We have
highlighted how computational modelling in combination with more
ecological tasks can allow the dissociation of different behavioural
processes and the characterization of different neural systems. We hope
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this approach will enable better characterization of the diversity of an
individual’s behaviour (in other words creating computational ‘finger-
prints’ of a person’s cognitive abilities) and by extension enable map-
ping of subgroups of patients and symptoms more reliably. While psy-
chiatric research has begun to apply some of those computational ideas,
many fruitful avenues for future research remain. Ultimately, the re-
sults of these studies could help to build new unifying theories of psy-
chiatric disorders that can be translated into patient treatment.
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