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From a gym workout, to deciding whether to persevere at work, many activities require us to

persist in deciding that rewards are ‘worth the effort’ even as we become fatigued. However,

studies examining effort-based decisions typically assume that the willingness to work is

static. Here, we use computational modelling on two effort-based tasks, one behavioural and

one during fMRI. We show that two hidden states of fatigue fluctuate on a moment-to-

moment basis on different timescales but both reduce the willingness to exert effort for

reward. The value of one state increases after effort but is ‘recoverable’ by rests, whereas a

second ‘unrecoverable’ state gradually increases with work. The BOLD response in separate

medial and lateral frontal sub-regions covaried with these states when making effort-based

decisions, while a distinct fronto-striatal system integrated fatigue with value. These results

provide a computational framework for understanding the brain mechanisms of persistence

and momentary fatigue.
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Most daily tasks require the exertion of effort over an
extended period of time. From a workout at the gym to
deciding whether to persist with a task at work, much of

our activities require us to keep deciding whether the effort is
‘worth it’. However, declines in our willingness to work often co-
occur with sensations of ‘fatigue’. Such sensations are a common
debilitating symptom across many psychiatric and neurological
disorders and have dramatic impacts on levels of daily activity1–3.
Research has begun to provide a richer understanding of the
computational and neural mechanisms underlying how people
value, and decide, whether a given amount of effort is ‘worth it’
for a certain magnitude of reward4–12. However, implicitly such
studies have not accounted for the effects of fatigue or have
attempted to control for any of its potential effects. Yet, the
willingness to work is not static13. Sometimes even though the
objective difficulty of a task remains the same individuals give up
or take a break14–18.

What are the hidden internal states that change how we sub-
jectively value effort over time and prevent us from persisting?
Theories suggest that the willingness to work can be characterised
by cost-benefit trade-offs, where the value of a reward is sub-
jectively discounted by the effort required to obtain it. Theore-
tically, we are willing to work when we consider the value of a
reward worth the effort we have to exert to obtain it13,19.
Although a number of factors can influence such valuations, it
has been argued that sensations of fatigue induced by the exertion
of effort can lead to subsequent reductions in the willingness to
work. Theoretically, as fatigue intensifies, it increases the deva-
luation of rewards by effort, leading to reductions in the will-
ingness to persist with a task, with less rewarding and more
effortful acts likely to be avoided13,20–22. In addition, time spent
resting can have a restorative effect18, reducing fatigue and con-
comitantly increasing the willingness to exert effort to obtain
rewards. Despite these claims being at the cornerstone of theo-
retical accounts, few studies have directly tested these tenets.
Existing research has shown that higher levels of fatigue are
related to a reduced willingness to exert effort for rewards18,23.
But little work has examined the dynamic, moment-to-moment
changes in how willing we are to decide that a reward is worth it
for the effort13,19–21,24.

Moreover, separate lines of evidence suggest that fatigue may
be comprised of distinct components that operate on different
timescales. There are short-term increases in fatigue during tasks,
which can be reduced by short periods of rest (recoverable fatigue
(RF))14. In addition, there are also longer-term changes that occur
after extended periods of exertion for which simply resting may
not lead to restoration (unrecoverable)25. As they increase, both
components putatively also increase the devaluation of rewards
by effort. However, although these components have been
examined separately, there has yet to be a formal framework that
unifies them, quantifies dynamic changes in fatigue, and how
fatigue shifts the value people attribute to exerting effort to obtain
rewards on a moment-to-moment basis.

Previous neurophysiological and neuroimaging accounts have
highlighted a core system in the brain that processes the costs and
benefits of engaging in effortful activities. Activity in sub-regions
of the supplementary motor area (SMA)/anterior cingulate cortex
(ACC), the middle frontal gyri (MFG), frontal pole (FP), and
ventral striatum (VS) have been implicated in computing value
and motivating the exertion of effort4,5,7,26–32. Evidence suggests
that these regions also change their response with time on
task13,15,17. However, it is unclear how this distributed system
changes on a moment-to-moment basis, and how that might lead
to changes in the value ascribed to exerting effort for reward. Do
separate sub-regions within this network signal fatigue on dif-
ferent timescales and integrate this into computations of value?

Here, we hypothesise that the brain regions outlined above,
that have previously been linked to effort-based decision-making,
covary differentially with RF, unrecoverable fatigue (UF), and the
momentary value of working (fatigue-weighted value). To test
this notion, we designed an effort-based decision-making task
(Fig. 1) where participants had to exert physical effort (grip force)
to obtain rewards (credits) whilst undergoing functional Magnetic
Resonance Imaging (fMRI). On each trial of this task, they chose
between a 5 s ‘rest’ (no effort, low reward [1 credit]) and 5 s of
‘work’ which varied in effort (30–48% of maximum grip strength)
and reward (6–10 credits). Using a computational model com-
bining previous cost-benefit valuation models with latent fatigue
variables, we predicted how effort-based decisions would change
across the task, as well as in a separate behavioural study where
people rated their momentary fatigue (Supplementary Materials).
Using this design, we were then able to identify and dissociate
brain regions in which the blood oxygen level dependent (BOLD)
signal varied with the hidden variables of RF, UF, and fatigue-
weighted subjective value (SV) on a trial-by-trial basis at the time
of making effort-based decisions.

We find distinct contributions of the MFG, and two distinct
sub-regions of the medial frontal cortex, in which activity covaries
with the hidden ‘fatigue’ states that modulate the willingness to
exert effort for reward. In addition, we distinguish these regions
from a fronto-striatal system that integrates these hidden states
with reward and effort to reflect the current value of working. The
same computational model could also explain trial-to-trial ratings
of fatigue, highlighting that the effects on effort-based decisions
may be directly linked to sensations of fatigue. Our approach
dissects hidden variables that underlie moment-to-moment
changes in fatigue and effort-based decisions, providing a fra-
mework for examining how fatigue impacts behaviour in health
and disease.

Results
The aim of this study was to examine how the value attributed to
exerting effort to obtain rewards changes on a moment-to-
moment basis, due to fluctuations in internal states putatively
linked to fatigue. We designed an effort-based decision-making
task in which participants would choose between 5 s of ‘work’ or
5 s of ‘rest’ whilst undergoing fMRI (Fig. 1; Supplementary Fig. 1).
Rest required no exertion, but only resulted in accruing a small
reward (1 credit). The work offer varied on every trial in both
reward magnitude (6, 8, 10 credits), as well as the amount of
physical effort (grip force) required to obtain it. These effort levels
were calibrated to participants’ own maximum grip strength (30,
39, 48% of maximum voluntary contraction [MVC]). Participants
had to exert force at the required level for a total of 3 s out of the
5 s window in order to receive the reward. Failure to do so
resulted in 0 credits. Although these effort levels were demanding,
they were easily achievable, and participants were successful at
executing the required levels of force on over M > 96.8% (SD <
4.6) of trials at all levels of grip force. In addition, we required
participants to rate their level of ‘tiredness’—a more commonly
used synonym of fatigue—between 0 and 10 before the start of the
main task, and then again after completion of the experiment.
Although participants could freely choose to rest, and thus pre-
vent a significant build-up of fatigue, a repeated measures t-test
revealed that ratings of fatigue were higher at the end of the
experiment than at the beginning (t(34)= 4.27, two-tailed p <
0.001, Cohen’s d= 0.72, 95% CI= [0.54, 1.52]; Supplementary
Fig. 2).

Effort discounting and persistence depend on the history of
effort exerted. We hypothesised that people’s willingness to exert
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effort for reward would change across trials. More specifically, our
computational model built around theories of fatigue suggests
that exerting effort increases levels of fatigue, and when fatigue is
higher, the same levels of effort and reward would have a reduced
value compared to when fatigue is low. Such an account would
predict that (i) participants would be more likely to work
in situations where fatigue is low and (ii) people would shift their
valuations, such that while higher effort/lower reward offers
would be worth working for at some times, they would be avoided
in favour of a rest at other times.

To test the first of these predictions we compared choices in the
main part of the experiment, where every choice of work resulted
in the requirement to exert force for reward, with a pre-task in
which only a random 10% of trials resulted in the requirement to
exert force (Fig. 1). The pre-task also contained a wider range of
offers, including options that were lower in reward (2, 4, 6, 8, 10
credits), but higher in effort to ensure we could capture the full
range of variability in people’s tendency to discount rewards by
effort (30, 39, 48, 57, 66% MVC). This pre-task therefore allowed
us to measure people’s tendency to discount rewards by effort in a
task where little fatigue would be accrued. First, we wanted to
show that in this pre-task, participants were discounting rewards
by effort. A logistic regression (with a Wilcoxon test across
participants) on choices to work or rest showed evidence of this,
with participants more likely to choose ‘work’ at higher rewards
(Z= 4.43, p < 0.001, 95% CI= [1.15, 2.17]), but less likely to work
at higher efforts (Z=−5.11, p < 0.001, 95% CI= [−2.55, −1.35]).
However, despite showing effort-discounting effects, participants
chose to work on almost all of the trials (M ≥ 95.4%) for each

combination of the higher reward (6–10 credits) and lower effort
levels (30–48% MVC) that were included in the main task
(Fig. 2). Thus, when little fatigue could accumulate, participants
valued these offers consistently higher than the value of rest.

The second claim that would be predicted by our model is that
the value of exerting effort for rewards declines as fatigue
accumulates, i.e. participants would shift the value they ascribed
to work offers across the main task. To test this, we performed a
logistic regression on choices to work or rest (with a Wilcoxon
test across participants), using effort and reward (offered on each
trial), cumulative effort (sum total of effort exerted from all
previous trials) and corresponding interactions as predictors
(Fig. 2). Consistent with a dynamic change in the value of
working, there was a significant interaction between effort and
cumulative effort, as well as main effects of effort, reward and
cumulative effort (cumulative effort × effort: Z=−4.19, p < 0.001,
95% CI= [−1.39, −0.47]; effort: −4.35, p < 0.001, 95% CI=
[−1.83, −0.96]; reward: Z= 3.96, p < 0.001, 95% CI= [0.69,
1.71]; cumulative effort: Z=−3.83, p < 0.001, 95% CI= [−2.45,
−0.84]). The three-way (Z=−0.27, p= 0.79, 95% CI= [−0.25,
0.37]) and the cumulative effort × reward interactions (Z= 1.40,
p= 0.16, 95% CI= [−0.06, 0.42]) were not significant. Impor-
tantly, offers that were considered as higher in value and were
chosen to work for at a high proportion in the pre-task, became
gradually less and less likely to be selected across trials in the
main task with effort and reward having strong effects even in the
last 27 trials of the experiment (Fig. 2; Supplementary Fig. 2).
Such findings are inconsistent with boredom or other factors
leading to generally more noisy or random behaviour.

Fig. 1 Trial structure and experimental design. a Participants made choices between a work offer and a rest, over 216 trials. Rest was always worth a low
reward (1 credit), with the work offer varying in reward (6, 8, 10 credits) and effort (30, 39, 48% of maximum voluntary contraction [MVC] on a hand-held
dynamometer). Each participant’s MVC was obtained prior to the experiment, in order to set the force levels idiosyncratically for each participant based on
their grip strength. Effort levels were depicted as the number of elements in a pie chart—more elements signified higher effort. Participants performed a
training session to familiarise themselves with how much force was required at each level of effort and to associate those effort levels with the
corresponding pie charts prior to entering the scanner. The location (left/right) of the work offer and rest was randomised across trials. After making a
choice, it was highlighted by a green frame. Participants then either rested or exerted the effort that was offered for 5 s. To obtain the credits offered,
participants had to exert the required force, indicated by a yellow line, for a sum total of 3 s out of the 5 s window, with a red colouring providing online
visual feedback. If unsuccessful they would receive 0 credits, if successful they would receive the credits of the offer that was chosen. The offer period was
jittered independently of the other events allowing us to examine activity time-locked to effort-based decisions. In a pre-task, only a random subset of 10%
of trials were selected and participants required to exert the effort (or rest) to obtain rewards. b Offers in the main and pre- tasks. Offers in the main
task (dark orange) were restricted to those highest in value (higher reward, lower effort) to ensure that participants did not rest in any of the options in the
main task simply because they would never value the options as worth working for. In a pre-task conducted outside the scanner, a wider range of offers
(light orange) were included to ensure that each participant’s effort-discounting behaviour could be quantified when they were not fatigued.
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Instead, these results are indicative of participants changing their
subjective valuation of working across trials, with accumulated
efforts increasing the discounting effect of effort and reducing the
value of working across the experiment.

Computational modelling: unrecoverable and recoverable
fatigue states impact the subjective value of work. To more
precisely quantify changes in valuation of effort across the task,
we developed a computational model of fatigue and its effect on
effort-based decisions (Fig. 2; Supplementary Fig. 3). We hypo-
thesised that fatigue has several components that impact on the
willingness to exert effort, each of which operates on a different
timescale. We predicted that the value of working fluctuates on a
short-term basis due to a build-up of (recoverable) fatigue after
exerting effort that is recovered by rest14. A separate line of
evidence suggests that demanding tasks also cause (unrecover-
able) ‘executive’ fatigue that cannot be easily restored just by
taking some time resting25. Here, we formalised a computational
model of how these two sources of fatigue would fluctuate trial-
to-trial during the task (Fig. 3; see Methods). This model con-
tained three free parameters estimated on choices to work or rest
in the main task. One parameter (α) scaled the amount that RF

increased by the exertion of effort, with a second (δ) scaling the
amount that RF was reduced by time spent resting. The third
parameter scaled the amount that UF increased by exerting effort
(θ). The fluctuating recoverable, and gradually increasing unrec-
overable, fatigue values were integrated into a parabolic effort-
discounting model4,33,34, in which rewards were devalued more
by effort as levels of the UF and RF increased. To account for
individual differences in people’s effort-discounting when parti-
cipants were not fatigued, we also included a free parameter (k)
which scaled how much participants devalued rewards by effort,
fitted to choices in the pre-task, and carried over as a fixed
parameter to model main task choices.

To test whether shifts in people’s valuations of effort across the
main task were related to hidden recoverable and unrecoverable
states, and whether three parameters were necessary to explain
changes in the willingness to work, we performed model
comparison. The results showed that the full model fitted better
to participants’ decisions to work than four other models in a
factorial design (Fig. 3) as well as two further mathematically
plausible models, in which fewer parameters scaled or removed
the unrecoverable and recoverable components (Supplementary
Table 5). Findings were comparable when using BIC or AIC
suggesting that extra parameters in the full model increased

Fig. 2 The shifting of subjective value of effort and reward. a Proportions (means) of choices to work in the pre-task (where only 10% of trials resulted in
subsequent work or rest). Participants were more likely to choose to work at higher reward and lower effort. The ‘high value’ work options (inside the
dotted line) were almost always chosen as worth working for. b Logistic regression on the pre-task choice data shows significant positive effects of reward
and negative effects of effort. The asterisks show significant t-scores (two-tailed p < 0.001) and the error bars represent SEM; n= 36. c Proportions
(means) of choices to work in the main task, where all choices resulted in subsequent work or rest. Some of the high value options previously worth
working for are now sometimes avoided. The lowest value of the higher value options (48% effort, 6 credits) is often avoided in favour of a rest in the main
task. d Percentage of participants who accepted the work offer, illustrated separately for each trial in the main task. Values reflect the consistency with
which trials were accepted or rejected across the experiment. This shows considerable variability in choices, but high levels of choices to work in early
trials, rather than late. e Proportion (mean) of accepting the work offers in first and second half of the main task. Gradually increasing effort discounting
reflects a shift in valuation of previously high valued offers across time in the main task. f Logistic regression predicting choices to work or rest in the main
task. The effort level in the current trial’s work offer interacts with the sum total of effort accumulated up to that trial (cumulative effort) to predict choice.
The asterisks show significant t-scores (two-tailed p < 0.001) and the error bars represent SEM; n= 36.
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explanatory power. In addition, to test whether the full model was
the most frequent in the population we calculated exceedance
probabilities for each model35. The full model had the highest
probability of being the most frequently best fitting model to
participants’ choice data (Fig. 3 and Supplementary Table 5). This
would suggest that participants made decisions to work based on
a fatigue-weighted value, where fatigue depended on recoverable
and unrecoverable states. Notably the UF parameter (θ) also
correlated with the change in ratings of fatigue taken before and

after the main task (rs= 0.361, two-tailed p= 0.033, 95% CI=
[0.032, 0.620]) suggesting that choice behaviour may have been
linked to sensations of fatigue (Supplementary Results).

To test that this model was not only better than the alternatives
but also significantly predicted choice behaviour, we performed a
logistic regression on work versus rest decisions including z-
scored reward and z-scored interactions of effort and trial-by-trial
model-estimated RF and UF as predictors. As in the previous
logistic regressions (with a Wilcoxon test across participants),

Fig. 3 Modelling the fatigue-weighted subjective value of effort and reward. a List of main models compared. All models assume that rewards (R)
increase subjective value (SV), effort (E) decreases SV, and people discount the rewards by effort idiosyncratically—modelled with a discount parameter
(k) fitted to the pre-task. Two null models assume that the willingness to exert effort for reward remains static across the trials of the main task, either with
the same discounting parameter as for the pre-task (k; model 1) or with a new discounting parameter (γ; model 2). Models 3–5 capture changes in effort
discounting due to fatigue. The full model (model 5) assumes that exerting effort increases recoverable fatigue (RF), but time (Trest) spent resting
decreases it. Both of these are scaled for each participant by two corresponding free parameters that define a person’s short-term fatigability (α, δ).
Unrecoverable fatigue also increases through exerted efforts, but never declines. This is also weighted by an idiosyncratic free parameter (θ), which defines
long-term fatigability. These are summed to create F, which then serves to increase the discounting of rewards by effort as they increase. Models 3 and 4
include only the effects of UF or RF. b Schematic representation for how F (both UF and RF combined) affect value and choices to work or rest, with greater
discounting of rewards by effort as fatigue increases. cModel comparison highlights that the full model is a better predictor of choice data than the simpler
models in terms of AIC (left) and in exceedance probabilities (right), highlighting that both RF and UF are necessary to understand the willingness to exert
effort. Star indicates winning model. d Furthermore, the model-estimated RF and UF—from model 5—significantly interacted with effort to predict choice
behaviour in a logistic regression. The asterisks show significant t-scores (two-tailed p < 0.001) and the error bars represent SEM; n= 36.
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reward significantly predicted choice (p < 0.001), but crucially
there were also significant negative interactions of effort and both
fatigue components (RF × effort: Z=−4.98, p < 0.001, 95% CI=
[−4.93, −2.98]; UF × effort: Z=−5.17, p < 0.001, 95% CI=
[−5.06, −3.39]). This was the case whether using the average
estimated fatigue across participants or the model’s idiosyncratic
estimate of fatigue from each participant (all ps < 0.001). Thus,
when the levels of fatigue in the model were higher, it was
predictive of a greater tendency to rest, in particular when higher
effort levels were on offer. Therefore, the willingness to exert
effort for reward is not static but fluctuates moment-to-moment.
When fatigue states in our model are higher this is related to a
greater discounting of reward by effort.

To further examine whether the computational model was able
to capture sensations of fatigue, we performed an additional,
similar behavioural experiment (Supplementary Methods; Sup-
plementary Fig. 5). In this study, participants (n= 40) performed
a task with identical effort (0, 30, 39, 48%) and reward levels (6, 8,
or 10 credits) to those used in the main task of the fMRI
experiment. However, rather than being able to freely choose
whether to work or rest on each trial, instead they were required
to exert a level of effort (or take a rest) and then rate their level of
‘tiredness’ (a synonym for fatigue) on each trial. The computa-
tional model would predict that fatigue ratings would (i) increase
as a function of effort exerted, (ii) would decrease after a trial of
rest, (iii) the build-up would be best characterised by both RF and
UF factors and (iv) would change independently of reward. In
line with the predictions of our model, we found a significant
effect of effort on trial-by-trial changes in fatigue ratings, a
significant reduction in ratings after a trial of rest, but no
significant effect of reward on ratings (Supplementary Fig. 6). To
directly test these claims, we fit the three models that aim to
capture changes in fatigue, that were fitted to effort-based choices
in the fMRI experiment, to the trial-by-trial ratings in the
behavioural study (Supplementary Fig. 7 and Supplementary
Table 5). The full model, containing separate RF and UF
parameters better explained ratings than the other models. These
results support the notion that our model is able to capture trial-
by-trial changes in fatigue induced by effort, as well as its effects
on the value ascribed to exerting effort for reward.

fMRI results. We hypothesised that regions of the brain pre-
viously linked to effort-based decision-making would be dis-
sociable in terms of signalling different hidden states within the
computational model. That is, the BOLD signal in some regions
would fluctuate with levels of recoverable and unrecoverable
fatigue. To test this notion, we fitted parametric trial-by-trial
regressors of the model-estimated UF and RF time-locked to the
moment when participants were presented with the work and rest
offers. Although this was the moment when people were evalu-
ating the work offer, these regressors carried information only
about levels of fatigue—the history of exerted effort—and thus
were not correlated with the effort level and reward of the work
offer on the current trial. In addition, we examined activity
covarying trial-by-trial with the model-estimated, fatigue-weigh-
ted, SV of work time-locked to the same event. These parametric
regressors were not strongly correlated (r < 0.4, see Methods) and
thus activity independently covarying with each could be
identified.

Distinct regions signal hidden recoverable and unrecoverable
fatigue states during choice. To test our hypotheses, we first
wanted to examine whether distinct regions signalled fatigue
states on different timescales. We therefore examined voxels in
which activity at the whole-brain level, and within our

hypothesised regions of interest ([ROI]—see Methods), sig-
nificantly covaried with parametric regressors reflecting the trial-
by-trial values of RF, UF and SV. Then we tested whether the
same voxels significantly covaried with one parametric regressor
and did not significantly covary with the others. Such an
approach of examining overlap avoids the problems of double-
dipping in ROI based analyses. Thus, results we report reflect a
response exclusively to RF and UF.

A t-contrast on RF—to extract beta values corresponding to
that regressor—revealed a significant negative relationship
between the BOLD signal in a cluster extending across the
posterior rostral cingulate zone (RCZp: 9, 5, 50; Z= 3.57, p=
0.038 small-volume FWE correction [svc]; Fig. 4). T-contrasts on
UF and SV did not reveal voxels in this region for either contrast
(p > 0.001 uncorrected). T-contrasts between RF and UF, as well
as RF and SV, revealed significant clusters in the RCZp (p <
0.05 svc) overlapping with that showing a significant effect in the
contrast on RF. Thus, at the time of evaluating and making effort-
based decisions, activity in a region extending across the RCZp
covaried negatively with a hidden recoverable state of fatigue that
is increased through effort but recovered through rest.

A t-contrast on UF revealed a significant negative relationship
with the BOLD signal in clusters in the left MFG of the DLPFC
(Fig. 4 and Supplementary Table 2) as well as in a cluster
spanning the anterior rostral cingulate zone (RCZa) and pre-SMA
(−6, 20, 47; Z= 3.67; p.= 0.030 svc; Fig. 4). T-contrasts on RF
and SV did not reveal voxels in the left MFG or RCZa for either
contrast (p > 0.001 uncorrected). Contrasts between UF and RF,
as well as UF and SV, revealed significant clusters in both the
MFG and RCZa, albeit at a reduced threshold (p < 0.05),
overlapping with those showing a significant effect in the contrast
of UF above. Thus, a distinct portion of the ACC from that which
signalled RF, showed an effect of UF, as did a portion of the MFG.
Moreover, in both of these regions activity did not covary with
the other components of the model. Thus, at the time of
evaluating and choosing whether to exert effort for reward, RCZa
and MFG activity negatively covaried with a gradually increasing
state of fatigue that was associated with reductions in the
willingness to work. In addition, a similar level of specificity was
identified in a region of the insula in which activity positively
correlated with UF (30, 17, 14; Z= 4.67; p= 0.026 FWE).

It has been suggested that signals in some regions linked to
effort-based decision-making may signal the difficulty of the
decision. Although different metrics of decision difficulty and
conflict exist, we used the probabilities calculated by the softmax
function as a metric of choice difficulty. Notably, activity in none
of the regions outlined above covaried with decision difficulty
(p > 0.001 uncorrected). Moreover, we did not find that these
regions specifically signalled variation in trial-by-trial reaction
times (p > 0.001 uncorrected, Supplementary Table 4).

A fronto-striatal system integrating value and fatigue. Next we
examined activity that covaried with the fatigue-weighted value of
the work offer estimated by the model (Fig. 5 and Supplementary
Table 3), using the same approach outlined above to identify
activity that scaled only with SV. A t-contrast on SV revealed a
significant positive relationship between the BOLD signal in the
superior frontal gyrus (SFG) extending into the FP (−12, 68, 17;
Z= 4.67, p= 0.025 FWE) as well as in the VS, with the peak voxel
within the nucleus accumbens of the Harvard-Oxford atlas (9, 11,
−10; Z= 4.31, p= 0.001 svc). T-contrasts of RF and UF did not
reveal voxels in this region for either contrast (p > 0.001 uncor-
rected). Contrasts between SV and RF, as well as SV and UF,
revealed significant clusters in both FP and VS (p < 0.05 svc)
overlapping with those showing a significant effect in the contrast
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on SV. Consistent with the idea that activity in the VS was sig-
nalling fatigue-weighted value in a subjective manner, we also
found significant correlations between the strength of signalling
in the VS for UF and RF and each participant’s corresponding
parameter weights (α, θ; δ) from the model. To avoid double-
dipping we performed an independent analysis to identify voxels
in which SV related activity correlated with parameters from the
computational model. We found that the degree to which the VS
signalled UF covaried with the UF parameter (θ; 6, 5, −7; Z=
4.55; p= 0.043 FWE). In addition, the degree to which the VS
signalled RF correlated with the effect of rest on the RF (δ; 9, 17,
−10; Z= 3.36; p= 0.028 svc) and the effect of effort on RF, albeit
at a reduced threshold (α; 9, 17, −10; Z= 2.93; p < 0.005
uncorrected). No such effects were found in voxels in the other
ROIs, with individual differences in fatigue and value only
reflected in the VS response. Thus, a distinct fronto-striatal sys-
tem processed the current value of exerting effort to obtain
rewards, integrating momentary levels of fatigue that modulate
the value ascribed to working. In the VS, variability between
people in the degree to which the fatigue variables covaried with
activity, correlated with the parameters from the model that
dictated how much someone’s willingness to work was under the
influence of fatigue.

Discussion
Many of our daily activities require us to persevere and keep
exerting effort to obtain rewards. Here we show that two hidden
states, one longer-term unrecoverable and one short-term reco-
verable, impact on people’s decisions to work and exert effort for

reward on a trial-by-trial basis. When these levels of fatigue are
higher, it leads to a decrease in the value of working, resulting in
choices to rest, particularly when working will be higher in effort
and lower in reward. The BOLD response in distinct portions of
the frontal cortex covaried separately with these two hidden
states, with the MFG and the RCZa signalling the unrecoverable
component, and a distinct RCZp region signalling the recoverable
component of fatigue. These regions carried no information
about the SV of working. Instead, activity in a distinct fronto-
striatal system comprising the VS and the FP integrated the latent
states to signal the current value of working weighted by levels of
fatigue. Moreover, the same computational model captured trial-
by-trial ratings of fatigue, such that sensations of fatigue appear to
similarly occur on two timescales, suggesting reductions in the
willingness to exert effort may directly follow increases in feelings
of exhaustion on a moment-to-moment basis. These results
highlight that the willingness to exert effort is not static, and
changes in fatigue states shift how much value we ascribe to
working on a momentary basis. Moreover, different brain regions
are involved in dynamically signalling different components of
fatigue.

In this study, people’s subjective valuations of exerting effort
for reward shifted constantly. In particular, choices to work were
avoided at reward and effort levels in the main task that parti-
cipants had readily chosen to undertake in a pre-task where
fatigue would not have accumulated. The results suggest that
these changes in the willingness to work were reactive, as a result
of changes in internal states, rather than related to pre-emptive
shifts in valuation. Such a conclusion is supported by the fact that
planning was prevented by the experimental design, with offers of

Fig. 4 Hidden states of fatigue during effort-based decision-making. a The BOLD signal in two distinct sub-regions of the ACC covaried trial-to-trial with
unrecoverable (UF) and recoverable fatigue (RF) states estimated by the model. Overlay of clusters in the anterior Rostral Cingulate Zone (RCZa; dark
blue) with activity covarying with UF, and the posterior Rostral Cingulate Zone (RCZp; cyan) with activity covarying with RF. Inset shows non-overlapping
clusters. RCZ regions defined with respect to the parcellation of Neubert et al.43. b Activity in the middle frontal gyri (MFG) covaried with UF. Images
displayed at p < 0.001 uncorrected. Parameter estimates (arbitrary units) at peak coordinates from RCZa (c), RCZp (d) and MFG (e) for UF, RF and fatigue-
weighted subjective value (SV). Each dot represents one subject. Error bars reflect SEM. All n= 36.
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effort and reward presented in a pseudorandom order. As such,
participants could not plan for the offers to-be-presented in
upcoming trials. In addition, our results showed that a model
containing fluctuating fatigue components better explained
choices than a model in which participants shifted their valua-
tions before the main task, but then held them constant across it.
Thus, participants’ willingness to work fluctuated and gradually
declined across the main task. Offers that participants considered
as worth working for at one moment would be rejected in favour
of a rest at another.

This study unifies separate lines of research that have theorised
that the effects of fatigue may occur on more than one
timescale3,13, and provides a formalised account of their effects
on effort-based decisions. One line of research had suggested that
extended periods of work lead to exhaustion that has con-
sequences for tasks performed after the one which caused the
fatigue16,25,36–38. This executive fatigue influences activity in the
MFG in tasks performed after having been exhausted, an effect
exacerbated in athletes who are over-trained25,39. This form of
fatigue appears to be unrecoverable in the sense that simply
taking short rests does not have a restorative effect. Although in
this study we cannot fully rule out the possibility that this effect is
simply due to time-on-task or boredom effects, we are able to
show that it affects both effort-based decisions and trial-by-trial
self-reported fatigue ratings, supporting the notion that it is a

component of fatigue that changes, and not only other subjective
effects. Moreover, we show that this longer-term effect is inde-
pendent from a short-term recoverable component and that it
covaries with activity during effort-based choice in the left MFG,
largely overlapping with an area which has previously been
associated with subjective aversion to cognitive effort40.

Our results shed new light on this long-term, unrecoverable
state. We show that this component is indeed processed in the
MFG during effort-based choice but builds slowly during
demanding tasks, reducing the willingness to exert effort for
reward over an extended time period. Moreover, this effect is
localised not only to the MFG but also to a connected sub-region
of the cingulate lying in the RCZa41–43. Lesions to this region
reduce the willingness to exert effort in rodents44 and neuro-
physiological recordings here have revealed neurons that respond
to effort costs45. Taken together, these findings would suggest that
the MFG processes a longer-term accumulating fatigue that
impacts both effort-based decision-making, performance, and
choice behaviour in other tasks39. In contrast, the RCZa processes
similar information, but perhaps more specifically when deciding
whether it is worth exerting effort. Moreover, the fact that
activity negatively correlated with UF in RCZa with higher
activity when fatigue was lower, and previous evidence that
stimulating the RCZa causes a sensation of a willingness to
persist through oncoming challenges46, suggest the RCZa may

Fig. 5 Fatigue-weighted subjective value in a fronto-striatal circuit. a The BOLD signal in the ventral striatum (VS) covaried with model-estimated
subjective value (SV), which is weighted by momentary levels of fatigue. Parameter estimates (arbitrary units) from peak coordinates for left and right VS
(below) for the responses to SV, recoverable fatigue (RF) and unrecoverable fatigue (UF). b BOLD signal in superior frontal gyrus (SFG), extending across
SFG/frontal pole areas 9 and 10, signals SV. Parameter estimates (arbitrary units) from peak coordinates in SFG/frontal pole (below) for the responses to
SV, RF and UF. Each dot represents one subject. Error bars reflect SEM. Images displayed at p < 0.001 uncorrected. All n= 36.
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play a key role in sustaining motivation and persisting during
effortful tasks.

In addition, our results highlight a short-term fatigue effect
that crucially is recovered by taking rests. Such a component had
long been theorised in accounts of physical fatigue9,13,47. How-
ever, to date no study had directly examined the changes in
neural activity that covary with changes in RF when people are
choosing whether a reward and effort are worth it. A previous
study had examined how people gave up and returned to work
during continuous grip force9 but did not examine how this
influenced effort-based decisions, nor neural activity when
ascribing value to work and making an effort-based choice. Here,
at the time of making effort-based decisions we found compu-
tations of RF in the RCZp. This region has also previously been
linked to persistence in decision-making tasks48–51, but here we
show its role in signalling a short-term momentary fatigue state
that influences decisions and the value of working.

The findings presented here provide empirical evidence for
theories which suggest that the willingness to exert effort fluc-
tuates on a moment-to-moment basis, and they highlight the
need for examining such momentary fluctuations to understand
variability in cognitive processes over time. The notion of time-
on-task effects in cognitively and physically demanding tasks is
well known13,19,24,52–54. Accuracy and speed decline over time in
many effortful cognitive tasks. However, our results suggest that
such changes in behaviour may be at least partially driven by a
reduction in the value ascribed to persisting with exerting the
effort required by the task demands. Considerable research has
shown that task performance depends on the balance between the
costs and benefits of acts. Rewards can increase the speed and
accuracy of both movements and cognitive processes, by paying
off the effort costs48,55. If the same difficulty of task is treated as
more costly over time, as our model predicts, it will devalue
rewards to a greater degree, and reduce task performance. Whilst
this study evaluated the willingness to work, rather than task
performance, the results suggest that there could be moment-to-
moment fluctuations in performance due to fluctuations in fati-
gue happening on multiple timescales. Moreover, they point to a
role of the VS for integrating current levels of fatigue with the
value of persisting with a demanding task, and variability between
people in such tendencies. A limitation of the experiment is that
comparing value, without any influence of fatigue, to fatigue-
weighted value signals is challenging, as they are necessarily
correlated within the design. However, importantly, we found
that variability in signalling in the VS between people correlated
with the parameters of the computational model. Such a finding is
consistent with activity in the VS signalling a dynamically
changing estimate of value, which is weighted by each partici-
pant’s tendency to persist in the face of momentary fatigue. Such
effects would be missed or confounded by typical analysis
approaches, e.g. when examining changes correlated with trial
number or behaviour pre vs post exhaustion, but they can be
examined using the formal framework outlined here. Future work
will need to understand how the VS integrates fatigue and value-
related information leading to fluctuations in the willingness to
persist with ongoing behaviour.

A striking aspect of the results was that the different hidden
internal variables of fatigue and value mapped on to activity in
discrete brain regions, with each area processing information
about a distinct component of the model. All of these regions—
ACC, MFG, FP and VS—have previously been linked to the
processing of effort and reward4,5,9,10,27,28,30,32,44,51,56–58, but a
considerable amount of this work, particularly that focused on the
cingulate cortex, had assumed that valuations are static. Our
results suggest that dynamic shifts in the valuation of effort cor-
respond to changes in response across two sub-regions of the

cingulate cortex, the RCZp and RCZa, and this information is
integrated in the VS. Importantly, activity relating to fatigue does
not explicitly represent the objective magnitude of the task diffi-
culty. Indeed, responses in these regions covaried with the fatigue
variables that carried no information about the reward and effort
of the work offer. Rather, when activity in the RCZa and RCZp
was reduced, it was at a time when levels of fatigue were higher,
irrespective of the value of the offer. However, although both
regions negatively correlated with levels of fatigue according to the
model, they were dissociable, processing fatigue levels on different
timescales. Such findings parallel recent evidence from studies
examining how different parts of cingulate cortex are activated by
learning at different timescales in reinforcement learning tasks59.
Our results suggest that this may be a wider ranging principal of
organisation that extends to other types of decision variables in the
cingulate cortex, with different aspects of fatigue shifting how
effort and reward are valued in extended tasks.

It was beyond the scope of this investigation to examine
whether the different components of fatigue map onto purely
psychological changes, physiological or metabolic changes in the
state of the body, or fluctuations in neuromodulatory
systems13,17,60. However, the computational approach taken here
was able to best explain changes in decisions about whether to
exert effort, and in self-reported sensations of fatigue, and thus
are unlikely to be explained by simply time on task or accumu-
lated reward effects. Although accumulated reward and accu-
mulated effort were correlated in the fMRI study, rewards did not
influence fatigue ratings trial by trial in the behavioural study.
Such findings, that sensations of fatigue were fluctuating in the
experiment and could be quantified using the same computa-
tional model in which effort exerted causes changes in fatigue,
suggest that changes to choice behaviour in the fMRI experiment
are more likely to be due to exerted effort than accrued reward. In
line with this, the UF and RF components fluctuated in regions
that have previously been linked to effort processing, rather than
in regions that have been found to signal accumulated
reward61,62. Future work will need to identify the source of these
fluctuating, putative fatigue states, and fully disentangle them
from other processes, such as opportunity cost processing,
boredom, task switching and time-on-task.

Thus our model may be fruitful for examining such core
questions relating to fatigue, including whether similar principles
hold when using a cognitively effortful task8,37,63,64. By using a
model that can quantify, idiosyncratically, each individual’s sen-
sitivity to the efforts they have exerted, and to their recovery
through rest, variables underlying fatigue can be probed more
precisely. Such an approach is also ideally suited for probing
fatigue in the multitude of clinical disorders in which fatigue is
present1,65. Future research may begin to examine how fatigue
accumulates and subsides in clinical disorders, in order to develop
more appropriate treatments for such a poorly understood
symptom of disease.

Overall, this study provides insights into the neural and com-
putational basis of the dynamics of fatigue. The willingness to
exert effort fluctuates on a moment-to-moment basis, with shifts
in the value of exerting effort for reward depending on a reco-
verable and an unrecoverable state of fatigue. These states cov-
aried with neural activity in distinct brain regions previously
linked to effort-based decision-making, namely in the RCZa and
MFG, as well as in the RCZp, when making choices about whe-
ther exerting effort is worth for the reward. However, persistence
also depended on a fronto-striatal circuit, which integrates fatigue
and value, with variability in people’s VS response predictive of
the influence fatigue had on effort-based choice. These results
reveal the hidden determinants of fatigue that underlie persis-
tence in the face of effort.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24927-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4593 | https://doi.org/10.1038/s41467-021-24927-7 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Methods
Participants. Thirty-nine young, right-handed participants with normal or
corrected-to-normal vision and no history of neurological or psychiatric illness
were recruited through the Oxford Psychology Research participant recruitment
scheme and online bulletin boards. Written informed consent was obtained from
all participants prior to the experiment. The study was approved by the University
of Oxford Central University Research Ethics Committee (MSD-IDREC-C1-2014-
037). One participant did not fully complete the experiment because of feeling
uncomfortable in the MRI scanner and was therefore excluded from the analyses,
and a further two participants were excluded due to excessive head motion (more
than 6 mm of translation). This sample size was selected based on previous fMRI
studies in which similar samples evoked responses in hypothesised regions4,25. The
final sample of 36 participants (16 females) had a mean age of 25.31 years (SD=
4.90; range 18–40). Participants were remunerated with £25 for taking part in the
study, plus a possible £10 further as a bonus payment. The bonus depended on the
credits accrued on all successfully executed trials of the main task, as well as trials
executed during the training and pre-task phase. Thus an increase in the bonus was
an incentive on every trial.

Experimental design. The aim of this experiment was to examine the hidden
states that lead to changes in the willingness to exert effort over time and their
neural correlates. We developed a physical effort-based decision-making task, in
which effort was operationalised as the amount of grip force that needed to be
exerted for a sum total of 3 s in order to obtain reward (credits). The main task of
the experiment was performed inside the MRI scanner, but in total the task con-
sisted of four different phases:

i. Calibration Phase - To calibrate the levels of effort (grip force), accounting
for individual differences in grip strength, each participant’s MVC was
measured at the beginning of the experiment by squeezing a hand-held
dynamometer on three consecutive trials with their dominant (right) hand.
Participants were required to apply as much force as possible on each trial,
and they received strong verbal encouragement while squeezing. During
each attempt, a bar presented on the screen provided feedback of the force
being generated. In the second and third attempts, a benchmark
representing 105% and 110% respectively, of the previous best attempt
was used to encourage participants to improve on their score. The
maximum level of force generated throughout the three attempts was used
as the participant’s MVC to calculate levels of force required for each
participant at each effort level.

ii. Training Phase – Participants were able to familiarise themselves with the
effort levels used across the experiment and learnt how many segments of a
pie chart represented each level of force. Participants practiced reaching
each of six effort levels (0, 30, 39, 48, 57, and 66% of each participant’s
MVC). A successful trial occurred only when the force generated by the
participant exceeded the required level for a sum total of at least 3 s in a five-
second window. Practice of the effort levels was repeated three times,
resulting in 18 practice trials in total. Each trial commenced with a pie chart,
with the number of red segments indicating the upcoming effort level.
During the exertion period, participants were presented with a vertical bar,
providing them with real-time feedback on their force and indicating the
target effort level by a yellow line superimposed on the bar. When it was a
rest trial, indicated by one element in the pie chart, the bar was presented for
the same amount of time but with the yellow line displayed at the bottom of
the bar. To make sure that participants carefully and successfully completed
this training, they were awarded one credit for each successful squeeze, but 0
credits for a failure.

iii. Pre-task – Participants performed 75 trials of an effort-based decision-
making task before entering the scanner, aimed at measuring participants’
devaluation of rewards (credits) by effort in a situation where they would
not be experiencing higher levels of fatigue. Participants were required to
decide whether they find the rewards on offer are worth the required effort
by making a series of choices between two alternatives: a rest (baseline)
option for a low reward (1 credit), and an effort (work) option for a higher
reward. Work options consisted of one of five different effort levels,
represented by two to six filled segments in a pie chart cue that
corresponded to 30, 39, 48, 57, and 66% of each participant’s MVC, and
one of five different reward levels (2, 4, 6, 8, 10 credits) numerically
displayed below the pie chart. The rest option was represented by one filled
segment in a pie chart and “1 credit” numerically displayed below it. The
presentation side (left versus right side of the screen) for ‘work’ versus rest
options was counterbalanced across offers and trials. Effort and reward
levels for the ‘work’ option were varied independently and presented in a
pseudorandom order to ensure that each effort/reward combination was
distributed evenly across the task. Responses had to be made within 3.5 s,
using their left hand on a button box. Otherwise, “0 credits—Make your
choices faster” was written on the screen for the time that participants would
have spent working or resting. If participants chose to ‘work’, they were
required to exert the chosen force on the dynamometer for at least 3 out of
5 s in order to receive the credits associated with the work offer. In this pre-
task, only a random 10% of trials actually resulted in the requirement to

work or rest if chosen. Otherwise, a blank screen was presented instead of
the work or rest screen and the outcome screen for the equivalent duration.
Participants were instructed of this before the beginning of the task, but they
were not told which of the choices would count and which ones would not,
and they were instructed to always make their decisions as if they would
have to squeeze if they chose the work option. Furthermore, this part
included two breaks, i.e. was split up into three blocks, and participants were
free to decide when to continue with the task. Thus, levels of fatigue would
not be induced in the pre-task. Following this, participants received
feedback on each trial regarding their success or failure. If all the required
force was exerted for 3 s they would receive all of the credits, if they failed to
meet this requirement they would receive 0 credits. The choice period in the
following trial was separated from the outcome period in the preceding trial
and the successive work/rest period by a random jitter of 2–4 s.

iv. Main task – This task was performed inside the MRI scanner, aimed at
measuring how participants’ valuations of effort and reward change across
time. Participants performed 216 trials in the same pseudorandom sequence
of a task similar to the pre-task, that differed in three ways. Firstly, the range
of ‘work’ offers was lowered to include only those of high value, the three
lower effort levels (30, 39, 48% MVC) and the three higher reward levels (6,
8, 10 credits). This ensured that if participants chose to rest, they were doing
so for options that they would choose to work for in the pre-task. This
would indicate a shift in the value ascribed to working, which was indeed the
case in the behavioural data. Secondly, in the main task every choice
counted. Thus, every choice to work resulted in the requirement to exert the
required level of effort to obtain the offered reward. Thirdly, there were no
breaks included. If participants wanted to take a rest, they were instructed
they had to choose to do so. The duration of all trials (except for jittering)
was the same regardless of choices to rest or work, and across the pre and
main task. This ensured that participants’ choices and associated neural
correlates were not due to temporal discounting66–68. Participants were very
successful across the whole experiment at reaching the required force levels,
successfully obtaining credits on M > 96.8% (SD < 4.6) of the respective
trials, suggesting that participants’ choices were unlikely confounded by
outcome uncertainty. The effort levels used in this experiment were chosen
as they have been shown not to cause significant build-up of lactate and
muscle pain, and the stopping of exertion is driven more by the perception
of effort and not pain22,69. This ensured that our results are unlikely to be
due to muscle pain, which can be incurred at higher levels of grip force. In
addition, prior to the main task and at the end of the experiment
participants were required to rate between 0 and 10 their level of ‘tiredness’.
One participant was excluded from analyses of these ratings as data were not
appropriately captured.

Behavioural analysis. To determine whether the willingness to exert effort
changes as a function of effort, reward, and the history of effortful exertion, logistic
regressions (using Matlab’s glmfit function) on choices, with offered effort and
reward levels of the work option as predictor variables were conducted for each
participant. To analyse choices in the main task, cumulative effort (the sum total of
effort exerted during the task prior to the current trial), as well as interactions of
effort and reward levels (z-scored) with cumulative effort were added as additional
predictor variables. All regressors were z-scored for each participant, i.e. mean
centred and divided by the standard deviation. Regression models were fitted to
each participant’s choice data, and statistical inference was made at the group level
by comparing t-scores across participants against zero. Beta values for each par-
ticipant’s regression coefficients were normalised to t-scores as β/SE(β) in order to
compensate for the possibility of poor estimates of βs in participants with low levels
of variance. Because the t-scores were not normally distributed, they were tested for
significant deviation from zero using two-tailed non-parametric Wilcoxon signed-
rank tests. Confidence intervals (CIs) for Wilcoxon tests are based on the
Hodges–Lehmann estimate (median).

Computational modelling
Modelling subjective value. Theoretical accounts and existing empirical data have
suggested, but largely not formalised, the notion that fatigue can influence moti-
vation on multiple timescales. Here, we developed a computational model of
fatigue based on theoretical accounts and integrated it into a parabolic effort-
discounting model to explain how effort-based decisions change over time due to
hidden recoverable and unrecoverable components. This model could be fitted
separately to each participant’s behaviour. In line with previous work on how
rewards are parabolically discounted by physical effort4,33,34, we fitted a simple
discounting model to the pre-task choice behaviour. The model assumed that the
value of the work offer depends on how rewarding it is, how much effort is
required and how participants subjectively weigh these to guide their choices to
work or rest. That is:

SV ðtÞ ¼ RðtÞ � ðk*E2
tð ÞÞ ð1Þ

where SV ðtÞ represents the SV of the work option on trial t, and k the subject-
specific discount parameter, scaling the devaluation of a reward (R, reward level 2,
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3, 4, 5, or 6) by the effort (E, effort level 2, 3, 4, 5, or 6) required to obtain the
reward. The higher an individual’s k parameter, the steeper an individual’s discount
function, i.e. the more this individual’s valuation of rewards is discounted by the
effort required to obtain the rewards. To fit the model to the data, we used a
softmax function, which estimates the probability P i;tð Þ that a participant will
choose the work option i that has a SV over the rest option that has a value of 1 (1
credit, no effort), defined as:

P i;tð Þ ¼
eSV ði;tÞ*β

e1*β þ eSV ði;tÞ*β
ð2Þ

Since the baseline SV was fixed at 1 (one credit, no effort), when the baseline
was chosen P i;tð Þ was calculated according to P i;tð Þ = 1−P i;tð Þ . Maximum likelihood
estimation, using fminsearch function in Matlab, was used to minimise the
difference between each participant’s actual choices and the model estimates for
each trial, i.e. to minimise the negative log-likelihood (LL). This fitting procedure
was used to fit choices in both the pre-task and main task.

The estimates of the discounting parameter k and the level of stochasticity in
the choices (β) were restricted not to go below 0.0276 (in which case even the
combinations of lowest reward and highest effort are always accepted) and 0,
respectively. The model was fitted 50 times using different random starting values
(using rand) to ensure that the optimisation function had not settled on a local
minimum. By fitting this model to the pre-task, we were able to quantify a
participant’s typical willingness to exert effort for reward, and the noisiness in such
choices, during a task that would not evoke fatigue. The k and β parameters
obtained for each participant in the pre-task were used as fixed parameters in the
models fitted to choices in the main task.

Modelling fatigue-weighted subjective value (full model). Based on theoretical
accounts we hypothesised that fatigue would increase with exerted effort, would be
partially recoverable and decrease with time spent resting, but would also have a
gradually increasing unrecoverable component which did not recover with
rest9,13,20,25. This fatigue impacts value, such that when the levels of fatigue were
higher, participants would be less willing to work. Thus, we developed a model
including recoverable and unrecoverable components of fatigue that would fluc-
tuate over the experiment and integrated them into the value-based model in Eq. 1:

SV ðtÞ ¼ RðtÞ � ððRF tð Þ þ UF tð ÞÞ*k*E2
tð ÞÞ ð3Þ

In this full model, rewards (R) are devalued by effort (E), subjectively weighted
by the discount parameter k from the pre-task. In addition, this discounting effect
fluctuates trial-to-trial by levels of recoverable (RF) and unrecoverable (UF) fatigue.
RF subjectively increases if a person exerts effort, i.e. accepts the work offer (Eq. 4),
with the work parameter α scaling the amount that effort increases RF, and
subjectively recovers by time resting (Trest), as captured by the rest parameter δ
(Eq. 5). These individual parameters scale how fatigable a person is. UF subjectively
accumulates depending on the effort exerted across the whole task, scaled by
parameter θ, and is not restored by resting (Eq. 6):

RFðtÞ ¼ RFðt�1Þ þ ðα*E t�1ð ÞÞ ð4Þ

RFðtÞ ¼ RFðt�1Þ � ðδ*Trest t�1ð ÞÞ ð5Þ

UFðtÞ ¼ UFðt�1Þ þ ðθ*Eðt�1ÞÞ ð6Þ
The SV SV and the fatigue levels RF and UF were updated for each trial (initial

RF and UF = 0.5) and fed into the softmax (Eq. 2) as above, to estimate P in each
trial. Based on theoretical considerations, only parameter values ≥ 0 and RF
estimates ≥ initial RF were allowed. Missed trials, which were very rare (M= 0.57%
of all trials, SD= 1.71), were treated as rest trials. To maximise the chances of
finding global rather than local minima, parameter estimation for the full model
and for all alternative models (see below) was repeated over a grid of initialisation
values, with 12 initialisations (ranging from 0 to 1.1) per parameter. The optimal
set of parameters for each model was used for model comparison and for further
analyses.

Model comparison. To verify whether the three parameters used to quantify the
effects of fatigue were necessary, alternative models were also fitted to participants’
choices in the main task. These models fit within a factorial structure of models
containing no effect of fatigue (two null models), an effect of UF only (i.e. θ being
fitted), an effect of RF only (i.e. α and δ being fitted) or the full model with both RF
and UF. The two null models predicted no effect of fatigue in the main task, one
which used the original pre-task discounting parameter (k) and thus assumed that
the willingness to exert effort stayed the same across the whole experiment, and a
second where a new discounting parameter (γ) was calculated across all trials in the
main task which assumed a fixed change in the willingness to work between the pre
and main tasks. In addition, two further mathematically plausible, but theoretically
unlikely, models were included which used only one parameter to scale the effect of
effort and rest on RF (i.e. only α being fitted across both work and rest trials). In
one of these models this fatigue was only comprised by this one parameter RF,
while in a second model, fatigue comprised UF plus the one parameter RF. These
two models had higher AIC values and thus worse fits than versions of the RF
model including separate parameters and are thus not shown in figures. In the

models including a fatigue term, initial RF and UF values were defined such that
the initial total fatigue was always equal to 1.

In order to investigate the models’ relative ability to predict the behavioural
data, model fits were compared using the Akaike Information Criterion (AIC)70

and Bayesian Information Criterion (BIC)71 with lower values indicating better fit.
Model fit to a given data pattern can be improved by simply adding additional
parameters, and thereby models with more parameters may be overfitted. AIC and
BIC punish models with more free parameters and favour the most parsimonious
solutions by adding a penalty term to the LL which depends on the number of
parameters (d) and in the case of BIC also on the number of observations, i.e. the
number of trials (n):

AIC ¼ �2 � LLþ 2 � d ð7Þ

BIC ¼ �2 � LLþ d � lnðnÞ ð8Þ
Functional imaging and analysis
fMRI scan acquisition. For anatomical localisation, a high-resolution, three-
dimensional structural T1-weighted image was acquired using a magnetisation-
prepared rapid gradient echo sequence with 192 slices [slice thickness= 1 mm,
repetition time (TR)= 1900 ms, echo time (TE)= 3.97 ms, flip angle= 8°, field of
view= 192 mm × 192 mm, voxel size= 1 × 1× 1mm]. A total of 2355 whole-brain
functional T2*-weighted echo planar images (EPIs) were acquired with a tilted-
plane sequence with a pitch of 30°, in order to reduce potential image distortions
and signal losses caused by susceptibility gradients near air/tissue interfaces72,
using multiband factor acceleration interleaved slice acquisition [72 slices, slice
thickness= 2 mm, TR= 1570 ms, TE= 30 ms, flip angle= 70°, field of view= 216
mm × 216mm, voxel size= 2 × 2 × 2mm]. Subsequent to the functional sequence,
a gradient echo field map sequence was used to collect phase and magnitude maps
(TE1= 4.92 ms, TE2= 7.38 ms) in order to correct for geometric distortions caused
by magnetic field inhomogeneities.

Image preprocessing. Imaging data were preprocessed and analysed using Statistical
Parametric Mapping (SPM12, Wellcome Department of Imaging Neuroscience,
University College London, https://www.fil.ion.ucl.ac.uk/spm). First, to correct for
head motion within participants, each EPI in a participant’s time-series was realigned
to the mean image using a least squares approach and a six parameter, rigid body
spatial transformation73 with B-spline interpolation. In addition, the acquired field
maps were used to estimate the amount of non-linear distortion from magnetic field
inhomogeneities for each functional image and to correct for the movement-by-
distortion interactions74,75. Following this, the mean of the realigned and unwarped
functional images was coregistered to each participant’s own structural image, based
on Collignon et al.76, to ensure better anatomical localisation and greater precision in
spatial normalisation. Next, the coregistered structural image was segmented into
tissue probability maps based on standard stereotaxic space (Montreal Neurological
Institute, MNI), bias-corrected and normalised to the MNI template77. The same
normalisation parameters were used to convert the realigned and unwarped func-
tional images into standard space. Functional images were then resampled to a voxel
size of 3 × 3 × 3mm and spatially smoothed using an 8mm full-width-half-maximum
Gaussian kernel in order to improve the signal-to-noise ratio.

First-level statistical analysis. First level whole-brain statistical analyses were per-
formed using general linear models. To examine whether BOLD activity in any
voxel parametrically varied with the trial-by-trial estimates of SV, RF and UF from
the winning computational model (full model) during decision-making, the aver-
aged and z-scored trial-by-trial estimates for SV, RF, and UF were used as para-
metric modulators for the offer cue event-related regressor, i.e. the onset of the
options screen. To improve overall model fit and account for potential confounds,
the design matrix included the following additional regressors which were not
analysed: Four regressors that modelled the onset of the work/rest screen and the
onset of the outcome screen, both separately for work trials and rest trials, as well
as a regressor that included all events onsets from trials with a missed response.

Regressors were modelled with a stick (delta) function with 0 s duration,
convolved with a canonical hemodynamic response function (HRF). For the
parametric modulators, a 1st order modulation was selected, i.e. it was assumed
that the stick function heights will change linearly over different values of each
parametric modulator. Parametric modulators were not orthogonalised with
respect to each other. To ensure that the model could be estimated and that
respective inferences could be made, the regressors of interest were checked for
rank deficiency and statistical independence. Correlations between parametric
regressors were all below 0.4 (r=−0.08 between RF and UF; r =−0.09 between
RF and SV; r=−0.36 between UF and SV). The six rigid body motion parameters
estimated during the realignment step (three translations and three rotations) were
added as separate regressors that were not convolved with the HRF to control for
nuisance effects resulting from head motion. The high-pass filter cut-off was set to
128 s in order to remove low-frequency noise. Regression coefficients were
estimated using a restricted maximum likelihood algorithm, using an
autoregressive AR(1) model to account for autocorrelations intrinsic to the fMRI
time series. Contrasts for each of the three parametric modulators as well as
contrasts between them were conducted to identify regions in which the BOLD
signal covaried with each regressor independently and in comparison to each other.
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In addition, we ran a control analysis in which we added an index of trial-by-
trial decision difficulty as a parametric modulator to the design matrix, time-locked
to the onset of the offer cue. Decision difficulty for each participant was calculated
as -|P−0.5 | , with P representing the choice probabilities derived from the softmax
function from the full model. That is, more difficult decisions should be reflected as
probabilities closer to 0.5 (or difficulty= 0), while easier decisions should be
reflected as probabilities closer to 0 or 1 (difficulty < 0). Trial-by-trial estimates
were then averaged across participants and z-scored. Although this approach is
limited by averaging across participants, it ensures that variance is scaled similarly
across participants. In addition, to examine activity that covaried with reaction
times, we also ran a separate GLM in which only individual trial-by-trial reaction
times were included as a parametric regressor (Supplementary Table 4).

Second-level statistical analysis. In order to be able to make inferences about the
sample population, a random effects second-level statistical analysis was conducted.
Therefore, the contrast images from the first level were analysed using one-sample
t-tests at each voxel for each contrast of interest. T-contrasts were then applied to
identify areas in which activity varied statistically with the parametric modulators.
To correct for multiple comparisons, we used a statistical threshold of p < 0.05 with
voxel-level family-wise error (FWE) correction across the entire brain volume.
Because previous studies have emphasised the importance of the VS and the
dACC/pre-SMA region in processing effort-based decisions, and in order to be able
to specifically localise activity to anatomically and functionally distinct regions, we
also probed these areas using a priori ROI. Therefore, t-contrasts were conducted at
the whole-brain level at an uncorrected statistical threshold of p < 0.001, and then a
FWE small-volume correction was applied using a combined mask taken from
appropriate atlases (bilateral VS: from Harvard-Oxford Atlas; bilateral dACC and
pre-SMA: areas RCZa, RCZp and pre-SMA defined through resting-state parcel-
lations of the frontal cortex by Neubert et al.43. By combining these masks together
we provide a more conservative statistical threshold than individual ROI analyses,
balancing possible false negatives that can occur with whole-brain correction. Full
tables of results are reported at an uncorrected threshold of p < 0.001 in Supple-
mentary Tables 1–3. At this reduced threshold clusters in the VS and RCZp lie
within a larger cluster and thus do not show in the list of peak results only.

In addition, to examine whether activity was modulated by how strongly a
participant’s choices were affected by RF and UF, each participant’s UF parameter,
RF work parameter and RF rest parameter from the full model were used as a
covariate for the respective UF and RF t-contrasts in separate second-level group
analyses. To avoid double-dipping when correlating parameters with voxels which
are already known to show a significant result in a non-independent analysis, we
performed these analyses by examining whether any voxels showed a significant
effect within the ROI masks. Such an approach does have the limitation that the
significance between correlations cannot be determined formally. For these
analyses, we excluded one participant who had excessively high RF work and rest
parameters.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for Figs. 2b, 2f, 3d, 4c-e, 5a-b and Supplementary Figs. 2a, 3, 4c, 6a-c are
provided with this paper, and are also available on the Open Science Framework (OSF;
https://osf.io/xr84w/; Digital Object Identifier: DOI 10.17605/OSF.IO/XR84W).
Unthresholded statistical maps underlying Figs. 4 and 5 are available at the same link.
Further fully anonymised behavioural and fMRI data that support the findings of this
study are available from the corresponding authors upon reasonable request. Source data
are provided with this paper.

Code availability
Main experimental code is available at this link (https://osf.io/xr84w/; Digital Object
Identifier: DOI 10.17605/OSF.IO/XR84W). Custom Matlab code to implement the
computational models is available from the corresponding authors upon reasonable
request.
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