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A B S T R A C T   

The high prevalence of unhealthy dietary patterns and related brain disorders, such as dementia, emphasizes the 
importance of research that examines the effect of dietary factors on brain health. Identifying markers of brain 
health, such as volume and connectivity, that relate to diet is an important first step towards understanding the 
lifestyle determinants of healthy brain ageing. We conducted a systematic review of 52 studies (total n = 21,221 
healthy participants aged 26–80 years, 55 % female) that assessed with a range of MRI measurements, which 
brain areas, connections, and cerebrovascular factors were associated with dietary markers. 

We report associations between regional brain measures and dietary health. 
Collectively, lower diet quality was related to reduced brain volume and connectivity, especially in white and 

grey matter of the frontal, temporal and parietal lobe, cingulate, entorhinal cortex and the hippocampus. As-
sociations were also observed in connecting fibre pathways and in particular the default-mode, sensorimotor and 
attention networks. 

However, there were also some inconsistencies in research methods and findings. We recommend that future 
research use more comprehensive and consistent dietary measures, more representative samples, and examine 
the role of key subcortical regions previously highlighted in relevant animal work.   

1. Introduction 

Obesity and type 2 diabetes are risk factors for dementia (Beydoun 
et al., 2008), including Alzheimer’s dementia (Kivipelto et al., 2005; 
Vagelatos and Eslick, 2013; Walker and Harrison, 2015), but the effects 
of diet on the brain are not fully understood. There is evidence that diets 
high in fat, especially saturated fat as well as refined carbohydrates in-
crease the risk of developing dementia (Gentreau, 2020; Luchsinger 
et al., 2002; Kalmijn et al., 1997a), whereas a diet high in ω-3 long-chain 
fatty acids, polyunsaturated fats (Barberger-Gateau et al., 2002) and 
certain antioxidants (Devore et al., 2010; Engelhart et al., 2002; Kalmijn 
et al., 1997b) are associated with decreased risk. With the growing 
ageing population and increased frequency of obesity (23 % in Europe, 
WHO Europe, 2016), it is critical to identify how modifiable dietary 
factors may influence the ageing brain in order to promote healthy 
ageing (Petersson and Philippou, 2016). 

A balanced diet, facilitated by a combination of macronutrients, fatty 
acids and vitamins, is important for maintaining brain health (Hueston 
et al., 2017). In research studies, diet patterns are often indirectly 
inferred from metabolic variables, such as cholesterol levels (Meusel, 
2017; Spielberg, 2017), fatty acid profiles (Talukdar et al., 2019; Zwil-
ling et al., 2019), or specific diets, such as the Mediterranean diet (MeDi; 
Luciano, 2017; Petersson and Philippou, 2016; Titova et al., 2013b), 
caloric restriction (defined as limiting caloric intake without loss of 
nutrient content; Prehn, 2016), a health-aware diet (defined as a con-
sumption of more fruits and less meat, eggs and spirits; Booth et al., 
2014; Jacka et al., 2015) or food consumption assessed through ques-
tionnaires (Gu, 2015). As most dietary studies vary in their methods, 
study designs and samples, we lack an overall understanding of the 
specific microstructural, vascular and functional brain correlates of di-
etary health. These brain markers would have promising applications as 
intermediary outcomes in dietary clinical trials or intervention studies. 
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Further, several studies implicate poor dietary health in a number of 
neurological and psychiatric disorders including depression (Molendijk 
et al., 2018; Quirk, 2013), stroke (Psaltopoulou, 2013; Román, 2019), 
sleep problems (Castro-Diehl et al., 2018; insomnia: Gangwisch, 2020), 
Alzheimer dementia, (Román, 2019), multiple sclerosis (Francis and 
Stevenson, 2018), and epilepsy (Fan et al., 2019; Huffman and Kossoff, 
2006), however there is little clarity on how diet affects the brain in 
healthy ageing. 

MRI can provide useful biomarkers for diet correlates of brain 
ageing. Few studies have examined specific brain areas in relation to diet 
markers in nonclinical populations. Some studies show associations of a 
healthier diet (i.e. higher scores for the MeDi diet) with larger cortical 
thickness (Gu, 2015; Mosconi, 2014; Staubo, 2017), lower WM hyper-
intensity (WMH) burden (Gardener, 2012), and preserved WM micro-
structure (Pelletier, 2015). Particularly relevant are connections 
between areas of the default mode network (DMN), a network which is 
first affected in dementia (see Hafkemeijer et al., 2012 for a review). 
Describing the role of these brain connections in relation to diet may be 
critical for our understanding of why unhealthy diets relate to an 
increased risk for dementia. 

In this systematic review, we summarise the existing literature 
examining the influence of diet on the ageing brain. We focus on brain 
MRI-based studies examining (1) white matter (WM) connectivity, (2) 
grey matter (GM) functional connectivity, (3) WM and GM volumes and 
(4) cerebrovascular physiology. In the following sections we outline 
these diet-brain associations and assess whether these associations are 
persistent over the lifespan. We outline inconsistencies in the direction 
or strength of associations reported across studies and offer suggestions 
to overcome these inconsistencies. 

2. Methods 

This review was written in accordance with international guidelines, 
such as the PRISMA and MOOSE statements for reporting systematic 
reviews (Shamseer et al., 2015; Stroup, 2000) and the protocol was 
preregistered on the PROSPERO international database (protocol num-
ber: CRD42019123013). 

2.1. Data sources 

Studies examining the associations between DM markers and brain 
health across the lifespan were identified using MEDLINE and Ovidsp 
(Embase and PsycINFO) in January 2019. Search terms used for MED-
LINE are shown in A1. These terms were adapted for the other databases 
used. The reference lists of retrieved studies were also screened for 
additional studies. 

2.2. Inclusion criteria and data extraction 

The inclusion and exclusion criteria are outlined below, and two 
authors (Daria E. A. Jensen, DEAJ and Virginia Leoni, VL) independently 
reviewed the retrieved articles to assess eligibility: 

2.2.1. Included studies   

1) Published as a journal article or letter.  
2) Cross-sectional studies.  
3) Longitudinal studies.  
4) Only studies conducted on human participants.  
5) Observational studies: i.e. studies which have assessed diet intake by self-report (e. 

g. Food Frequency Questionnaire, intake of ω-3 fatty acid) or cholesterol level  
6) Interventional studies: i.e. studies which have performed a diet intervention (e.g. 

caloric restriction, randomised controlled trials).  
7) Only studies which report participants’ age.  
8) Studies which examine any association between diet/metabolism and at least one 

of the following brain measures as an outcome variable: grey matter (GM) or white 
matter (WM) volume, WM microstructure (e.g., FA, diffusivity), network 

(continued on next column)  

(continued ) 

connections (e.g. resting-state functional connectivity, WM fibre tracts), WMH 
lesion load, CBF, infarcts and ventricular volume.  

9) Studies which report p-values for all significant effects  

2.2.2. Excluded studies   

1) Non-human studies  
2) Studies on unhealthy adults  
3) Case studies  
4) Non-English language articles  

The list of shortlisted papers was then compared between the two 
authors, and any differences were resolved by discussion. When agree-
ment was not obtained (n = 3 papers), a third analyst (SS) decided the 
relevance of the papers. Relevant papers were then independently 
assessed for quality, duplicates were removed, and the data was 
extracted for summary tables. Data extraction was carried out by using 
identical structured forms, which were subsequently compared to 
ensure consistency and accuracy in the information collected. Extracted 
data included study characteristics (e.g. first author, year of publication, 
study design, country of study), sample characteristics (e.g. sample size, 
participant’s age and sex), diet intake assessment, brain imaging char-
acteristics (e.g. neuroimaging technique and analysis, brain measure) 
and the reported findings (statistically significant results as indicated by 
p < 0.05, confound variables). 

2.3. Quality assessment 

Risk of bias was assessed by DEAJ and VL, using the Quality 
Assessment Tool for Observational Cohort and Cross-sectional Studies 
(NIH, 2008). This tool assesses several potential sources of bias in a 
study via 14 questions which assess the study design, eligibility of the 
study population, justification of the sample size, and validity and reli-
ability of the study measures.Both researchers rated each included study 
to be of “good”, “fair”, or “poor” quality. Any discrepancies on the 
quality ratings of a study was resolved by discussions. Summary tables 
provide quality assessments and descriptive and inferential statistics 
from the research data. 

2.4. Data synthesis 

Results are summarised in four tables: (1) WM connectivity, (2) GM 
functional connectivity, (3) WM and GM volumes and (4) cerebrovas-
cular physiology (WMH, ventricular volume, CBF, brain infarcts). 
Within each modality, studies are grouped according to the age category 
of participants, classed as young (20–35 years), middle-aged (36–55 
years) and older adults (56 years and older). 

2.5. MRI modalities 

We examined MRI measurements of (1) WM connectivity, (2) GM 
functional connectivity, (3) WM and GM volume and (4) cerebrovas-
cular physiology (WMH, ventricular volume, CBF and brain infarcts).  

(1) WM connectivity: We focused on studies using DTI, which detects 
the directional diffusion of water in the brain. If the diffusion in a 
voxel is anisotropic, it follows more easily along the axons than 
perpendicular to them. The degree of anisotropy (FA), together 
with the magnitude of diffusion (MD), axial (AD) and radial 
diffusivity (RD) are used to estimate the microstructural integrity 
of fibre tracts. Brain regions showing high FA and low MD are 
assumed to contain well organized axon arrays and better myelin 
integrity. A decrease in FA along with an increase in diffusivity 
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(Sexton, 2014) is observed in normal ageing (Burzynska et al., 
2010; Head, 2004; Yap, 2013) and to a greater extent in dementia 
(Suri et al., 2014). It can reflect dysfunctional properties of con-
necting axonal fibres and is related to disadvantages of cognitive 
processing (Johansen-Berg and Behrens, 2006).  

(2) GM functional connectivity: We examined studies using resting- 
state-fMRI to probe GM functional connectivity. Functional con-
nectivity generally decreases in cortical and limbic regions during 
ageing, and this is linked with cognitive decline (e.g. Kullmann, 
2016). In patients with Alzheimer’s disease, lower GM functional 
connectivity of the DMN is widely reported (Douaud et al., 2014; 
see Hafkemeijer et al., 2012 for a review).  

(3) WM and GM volume: We examined studies using T1 MRI scans 
for assessing global and regional GM and WM volumes.  

(4) Cerebrovascular physiology: Cerebrovascular correlates of DM 
markers were examined in studies using a range of MRI se-
quences: e.g. T2-weighted (T2) and fluid attenuated inversion 
recovery (FLAIR) scans for white matter hyperintensities (WMH), 
and arterial spin labelling (ASL) for cerebral blood flow. WMHs 
are indicators for altered interstitial fluid mobility and water 
content in the brain. WMHs usually increase with age (see Morris, 
2009 for a review) and CBF declines with age (Arbab-Zadeh et al., 
2004; Chen et al., 2001; Fujimoto et al., 2012). Both changes are 
also associated with cognitive impairments, increased risk of 

Fig. 1. Variables used to assess dietary health in a total of 52 articles. Some studies assessed multiple dietary markers.  

Table 1 
DM markers - white matter connectivity.  

Abbreviations: WM - white matter, SLF - superior longitudinal fasciculus, ILF - inferior-longitudinal fasciculus, IFOF - inferior-frontal occipital fasciculus, UF - uncinate 
fasciculus, CC - corpus callosum; ATR - anterior-temporal radiation; ACR - anterior corona radiata; hippo - hippocampus; FA - fractional anisotropy, MD - mean 
diffusivity, AD - axial diffusivity; RD - radial diffusivity, Chol. - cholesterol level; LDL - low-density lipoprotein, HDL - high-density lipoprotein, EPA - eicosapentaenoic 
acid, DHA - docosahexaenoic acid, BUADC - Boston University Alzheimer’s Disease Center, LIFE - Leipzig Research Centre for Civilization Diseases. 
Red text - interventional studies, black text - observational studies. 
*intervention was not diet related. 
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having a stroke and developing dementia (see Debette and Mar-
kus, 2010; Douaud et al., 2014; Ogoh, 2017). 

3. Results 

3.1. Study selection and dietary variables 

Initial database searches revealed 2632 articles, and after reviewing 
the titles and abstracts a total of 52 studies met the inclusion criteria for 
this review (see Fig. A1). Results from 52 studies comprised 21,221 
participants (54,74 % female). The risk of bias assessment revealed no 
quality risk of the 52 studies in the review; only twelve out of 52 studies 
had a ‘fair’ risk and no study met the criteria for ‘poor’, and therefore no 
study was rejected (see A3). The studies varied in their use of dietary 
markers, study designs, samples and analysis methodology. Some 
studies assessed multiple dietary markers. Dietary markers were 
measured by interventional, observational, cross-sectional, and longi-
tudinal studies. From the total of 52 reviewed studies, only nine studies 
were interventional, focussing mainly on the effect of dietary supple-
ments (Fig. 1). Other studies assessed single diet components (n = 53), 
ω-3 or 6 fatty acid (n = 8) or vitamins (n = 4), or dietary markers such as 
blood cholesterol (n = 21) but only a few studies (n = 11, see overview 
in Appendix 5.4) directly assessed complete dietary patterns using self- 
administered questionnaires. 

3.2. White matter connectivity 

Results from six studies including 837 participants (52 % female) 

addressed the relationship between dietary factors and WM connectiv-
ity. Four of those studies were cross-sectional and two were longitudinal 
studies with mean follow-up of 26 weeks. Most studies used region of 
interest or whole-brain regression analyses, including atlas-based and 
tract-based spatial statistics (Table 1). 

Booth et al. (2014) showed that a health-aware diet (defined as a 
consumption of more fruits and less meat, eggs and spirits) was associ-
ated with improved global WM connectivity, i.e. higher FA. Further, 
higher serum leptin was associated with worse WM connectivity 
(Mueller, 2011). Witte et al. (2014a) reported higher global WM FA and 
lower diffusivity after higher intake of ω-3 fatty acid, including in tracts 
such as the superior longitudinal fasciculus (SLF), inferior-frontal oc-
cipital fasciculus (IFOF) and uncinate fasciculus (UF), corpus callosum 
(CC), anterior-temporal radiation (ATR) and parietal WM. In the lon-
gitudinal trial of the same study, a 26 week intervention of fish-oil (rich 
in ω-3 fatty acid, 4 capsules each contain 1320 mg eicosapentaenoic acid 
(EPA) and 880 mg docosahexaenoic acid (DHA)) intake was associated 
with increased WM connectivity in the SLF, IFOF and UF, and the 
inferior-longitudinal fasciculus (ILF) and forceps minor (Witte et al., 
2014a). Although resveratrol intake was shown by Huhn et al., 2018 to 
be associated with various vascular health benefits, they found limited 
interventional evidence to link it to improvements in WM connectivity. 

Two studies examined the association between cholesterol (total, 
HDL and LDL cholesterol, triglyceride) and different tracts in young 
(Mueller, 2015) and older adults (Williams, 2013). Williams, 2013 re-
ported that higher total cholesterol, LDL cholesterol level and tri-
glycerides were related to lower FA in various fibre tracts (see Table 1). 
Higher HDL cholesterol was also related to higher FA in the CC (Mueller, 

Table 2 
DM markers - functional connectivity.  

Abbreviations: GM - grey matter, WM - white matter, DMN - default mode network, IC - intrinsic connectivity, FC - functional connectivity, MUFA - ratio of mono-
unsaturated fatty acids, SFA - saturated fatty acids, PUFAs - Polyunsaturated fatty acids, Vit. - vitamin, BMI - body mass index, BP - blood pressure, Chol. - cholesterol 
level, LDL - low-density lipoprotein, HDL - high-density lipoprotein, HbA1c - glycated haemoglobin, ICN, intrinsic connectivity networks, VMHC, Voxel-mirrored 
Homotopic Connectivity, MDMR, multivariate distance-based matrix regression, BMI - body mass index, BP - blood pressure (systolic, diastolic), ICV - intracranial 
volume. 
*cardiovascular risk profile, with total and HDL-Chol. 
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2015), the internal/external capsule and parietal and occipital WM, but 
paradoxically lower FA in ACR, ATR and temporal WM (Williams, 
2013). Williams, 2013 attributed this unexpected direction of FA to 
differences in the damaging effect of higher HDL cholesterol of 
anterior-temporal to parietal-occipital WM. Somewhat in agreement 
with Williams, 2013; Mueller, 2015 showed that participants with 
higher (good) HDL cholesterol show altered trans-callosal diffusivity of 
water molecules with lower RD in the CC (Mueller, 2015), whereas 
participants with higher (bad) LDL cholesterol show dysfunctional 
axonal properties with higher RD and AD in the total WM (Williams, 
2013). 

3.3. Grey matter functional connectivity 

Results from nine studies comprising 1,226 participants (53 % fe-
male) addressed the relationship between dietary markers and grey 
matter functional connectivity (Table 2). Five studies were cross- 
sectional and four longitudinal, with a mean follow-up of 18.5 weeks. 
Most studies used independent component analyses or similar intrinsic 
connectivity network analyses; and we also describe studies using seed- 
based functional connectivity, node-based approaches, such as graph 
theory and network modularity, multivariate distance-based matrix 
regression and voxel-mirrored homotopic connectivity. 

Studies on older adults showed an enhanced effect on the functional 
brain network organisation across different regions with beetroot juice 
intake (Petrie, 2017), higher lycopene (Zwilling et al., 2019), ω-3 
(Talukdar et al., 2018; Zwilling et al., 2019) and ω-6 (Zwilling et al., 
2019) level. Moreover, intervention with caloric-restricted diets (Prehn, 
2016) and resveratrol supplementation (Huhn et al., 2018; Witte et al., 
2014b) was associated with higher functional connectivity between the 
hippocampal subnuclei and the hippocampus and parietal areas. 
Further, a higher ratio of monounsaturated fatty acids to saturated fatty 
acids and higher levels of vitamin E and B was associated with lower 
functional connectivity in the DMN and attention networks (Zwilling 
et al., 2019). This indicates that lower concentration of these vitamins is 
associated with higher functional efficiency (Zwilling et al., 2019). 

Higher LDL cholesterol was associated with lower functional con-
nectivity in the DMN in old adults (Meusel, 2017) and in the superior 
temporal sulcus in young adults (Spielberg, 2017). Conversely, some 
studies have reported no associations between functional connectivity 
and the Framingham risk score (tracks the cardiovascular risk profile 

with total and HDL-cholesterol; Meusel, 2017) and with total or 
HDL-cholesterol (Kharabian Masouleh et al., 2018). The authors argue 
that this highlights the deleterious effect of LDL-cholesterol on brain 
health and the development of Alzheimer’s disease pathology (discussed 
in Meusel, 2017; Reed, 2014), especially in areas which are also affected 
by cognitive decline during ageing (e.g. Douaud et al., 2014; Kharabian 
Masouleh et al., 2018). However, as only three studies examined 
cholesterol and brain connectivity, further work is warranted. 

3.4. Volume 

All examined studies used T1 MRI scans to assess brain volumes, 
however they used a variety of techniques: voxel-based morphometry 
(VBM), GM volumes (atrophy), region of interest analyses) including 
manual segmentation, FreeSurfer-based parcellations and tensor-based 
morphometry or whole-brain analyses. Nonetheless, the direction of 
the association between dietary markers and brain volumes appeared 
largely consistent across techniques (compare with Tables 3 and 4). 

3.4.1. White matter volume 
Results from five studies with 6,750 participants (56 % female) 

addressed the relationship between dietary markers and WM volume 
(Table 3). Two studies were cross-sectional and three were longitudinal 
with a mean follow-up time of 5.5 years across studies. 

Gu, 2015 assessed the effect of the MeDi diet studied by using 
Food-Frequency questionnaires and showed that a healthier diet was 
related to larger WM volume. Further, Haller, 2018 reported that a 
higher intake of caffeine and white wine was associated with smaller 
total, frontal and parietal WM volumes, but paradoxically that higher 
total wine intake was associated with larger parietal WM volume (Hal-
ler, 2018). The positive impact of total wine intake compared to white 
wine suggests the positive antioxidant impact of red wine onto the brain, 
however further studies are needed to confirm this (see discussion 4.2 
for details). Although the effect directions varied between these diet 
markers, the reduced total WM volume with higher white wine (and not 
total wine) intake is likely to be the more statistically robust association 
due to the larger sample size (n = 145 vs n = 52 in the subgroups; Haller, 
2018, Table 3). Other studies have reported no associations between 
WM volume and ω-3 fatty acid or chocolate intake (Titova et al., 2013a) 
or the antioxidant-rich food intake (measured using the dietary 
ferric-reducing antioxidant power score; Devore, 2013). 

Table 3 
DM markers - WM volume.  

Abbreviations: WMV - white matter volume, TBV - total brain volume, ATR - anterior thalamic radiation, HCy - homocysteine level; MeDi - Mediterranean diet; FFQ - 
Food Frequency questionnaire, EPA - eicosapentaenoic acid, DHA - docosahexaenoic acid, FRAP - ferric-reducing antioxidant power, BMI - body mass index, Eth - 
Ethnicity, Ed - Education, BMI - body mass index, WHICAP -Washington Heights/Hamilton Heights Inwood Columbia Aging Project, PIVUS - Prospective Investigation 
of the Vasculature in Uppsala Seniors, sCON - stable cognition. 
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Table 4 
DM markers - grey matter volume.  

Abbreviations: GMV - grey matter volume, TBV - total brain volume; str - structural, func - functional, func* - functional task fMRI, MeDi - Mediterranean diet, FFQ - 
Food Frequency questionnaire, AHEI - alternative health eating index, EPA - eicosapentaenoic acid, DHA - docosahexaenoic acid, HCy - homocysteine level, Vit. - 
vitamin, NBP - nutrient biomarker patterns, BMI - body mass index, BP - blood pressure, Chol. - cholesterol level, LDL - low-density lipoprotein, HDL - high-density 
lipoprotein; HbA1c - glycated haemoglobin, SES - sociodemographic, Eth - ethnicity, Ed - Education, H - health-related variables, Chol - Cholesterol level, smo - 
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smoking status, BMI - body mass index, BP - blood pressure (systolic, diastolic), ICV - intracranial volume, med - medications, PA - physical exercise, vas - cardio-
vascular disease. 
red - interventional studies, black - observational studies. 
*intervention was not diet related. 

Table 5 
DM markers - Cardiovascular markers.  

Abbreviations: WMH - white matter hyperintensity, CBF - cerebral blood flow, HCy - homocysteine level; Vit. - vitamin, Chol. - cholesterol level, LDL - low-density 
lipoprotein, HDL - high-density lipoprotein, EPA - eicosapentaenoic acid, DHA - docosahexaenoic acid, AA – arachidonic acid, SES - sociodemographic, BMI - body 
mass index, BP - blood pressure (systolic, diastolic), vas - vascular risk factors/disease history. 
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No associations were found between cholesterol and WM volume. 

3.4.2. Grey matter volume 
Results from 36 studies comprising 15,874 participants (58.79 % 

female) addressed the relationship between dietary markers and GM 
volume (Table 4). 17 of those studies were cross-sectional and 19 were 
longitudinal with a mean follow-up time of 4,23 years across studies, 
whereas seven were diet interventional studies. 

In older (Boraxbekk et al., 2015; Gu, 2015; Luciano, 2017; Prehn, 
2016) and middle-age adults (Mosconi, 2018), a ‘healthier’ diet was 
consistently related to higher GM volume. Several composite dietary 
scores were associated with higher total brain volume, total GM volume, 
and the volumes of hippocampus, cingulate gyrus, entorhinal cortex, 
frontal, temporal and parietal lobe. This includes a higher score on the 
MeDi scale (Gu, 2015; Luciano, 2017; Mosconi, 2018; Titova et al., 
2013b), the Alternative Health Eating Index-2010 (AHEI-2010; 
Akbaraly et al., 2018), higher scores in the healthy ‘prudent’ diet and 
lower scores in the unhealthy ‘Western’ diet scales (Jacka et al., 2015), 
lower scores in the Palaeolithic diet (Boraxbekk et al., 2015), as well as 

caloric restriction scales (Prehn, 2016). 
Other individual diet markers, such as higher fish intake (Gu, 2015), 

vitamins (vitamin B, E, A, C, antioxidants and fibres; Berti et al., 2015; 
Devore, 2013; Erickson et al., 2008; blueberry supplementation: Bowtell 
et al., 2017), ω-3 or 6 fatty acids (Berti et al., 2015; Pottala, 2014; 
Walhovd, 2014; Witte et al., 2014a; Titova et al., 2013a), folate 
(Erickson et al., 2008), leptin (Narita, 2009), flavanol (Brickman et al., 
2014) and lutein intake (Lindbergh, 2018; Zamroziewicz, 2016) were 
associated with larger GM volume across the brain, but primarily in the 
hippocampus and often also including the temporal lobe (in 10 out of 14 
studies). 

In contrast, higher intake of some individual diet markers, such as 
fruit (Gu, 2015), fruit juice (Pase, 2017), saturated fats, trans-sat fats and 
sodium (Berti et al., 2015), fat fatty acids (Boraxbekk et al., 2015), meat 
(Gu, 2015; Titova et al., 2013b), higher homocysteine level (Hoosh-
mand, 2016) and brain-derived neurotrophic factor (Mueller, 2015) 
have been associated with smaller GM volume. While it was surprising 
that higher fruit consumption was associated with lower GM volume, it 
can be argued that this might be driven by the high fruit sugar (fructose) 

Table 6 
General trends observed in the diet-brain relationship. We have discussed the few inconsistencies for each of these relationships, however these are the overall di-
rections of associations across the 52 reviewed studies.  

Abbreviations: GM - grey matter, WM - white matter, WMH - white matter hyperintensity, CBF - cerebral blood flow, DMN - default mode network, SLF - superior 
longitudinal fasciculus, ILF - inferior-longitudinal fasciculus, IFOF - inferior-frontal occipital fasciculus, FA - fractional anisotropy, RD - radial diffusivity, AHEI - 
alternative health eating index, MeDi - Mediterranean diet, LDL - low-density lipoprotein, HDL - high-density lipoprotein. 
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intake. However, the result of Gu, 2015 is contradictory to other studies 
on multi-dimensional diets which showed that higher fruit intake is 
associated with larger GM volume (Akbaraly et al., 2018; Mosconi, 
2018; Luciano, 2017; Jacka et al., 2015; Booth et al., 2014, see detailed 
information in Appendix 5.4). 

Notably, the FFQ in Pase, 2017 did not account for added sugar in 
fruit juice, though regardless of added sugar all juice contains high 
amounts of fructose, which is on average more than the daily recom-
mended allowance per 200 mL serving (Boulton et al., 2016). To exac-
erbate this fruit juices contain negligible levels of fibre, which is 
suggested to be beneficial for brain function (Martin, 2000). Studies 
have also reported no significant associations of GM volume with sugary 
beverages, resveratrol intake (Huhn et al., 2018) and combined meat 
and fish (Luciano, 2017). 

Moreover, in young (Mueller, 2015), middle-aged (Gonzales, 2011; 
Koschack et al., 2009) and older adults (Chung et al., 2018; den Heijer 
et al., 2012; Hoogendam, 2012; Leritz, 2011; Walhovd, 2014), lower 
total cholesterol (Hoogendam, 2012; Koschack et al., 2009; Leritz, 
2011), higher LDL cholesterol (Chung et al., 2018; Leritz, 2011) or lower 
HDL cholesterol level (Mueller, 2015; Hoogendam, 2012) and lower 
total to HDL cholesterol ratio (Gonzales, 2011) were associated with 
smaller total GM volume (Walhovd, 2014), larger volumes in the frontal 
(Chung et al., 2018; Gonzales, 2011; Leritz, 2011), parietal (Chung et al., 
2018; Gonzales, 2011; Leritz, 2011) and temporal lobe (Leritz, 2011), 
the hippocampus (den Heijer et al., 2012; Koschack et al., 2009; Mueller, 
2015), other subcortical areas (Chung et al., 2018; den Heijer et al., 
2012; Leritz, 2011), the cerebellum (Hoogendam, 2012; Mueller, 2015), 
insula (Mueller, 2015) and cingulate gyrus (Chung et al., 2018; Leritz, 
2011). However, the directions of associations observed in the cere-
bellum shown in Mueller, 2015 and Hoogendam, 2012 were inconsis-
tent, which could be due to their discrepant methodologies. MRI 
analyses were conducted using VBM (Mueller, 2015) and FreeSurfer 
(Hoogendam, 2012), but only the latter study used covariates such as 
age, sex and ICV in their statistical analyses. 

Taken together, while these studies varied in how they assessed diet 
(e.g. composite scores or individual dietary components) and regional 
GM volume, a traditionally ‘healthier’ diet rich in vegetables, vitamins, 
antioxidants, ω-3 polyunsaturated fatty acids or fish intake, was most 
consistently linked to larger GM volumes across ages, whereas diets high 
in saturated and trans fats, proteins and meat were associated with 
smaller GM volumes. Moreover, while a few studies have reported no 
significant association between GM volume and total cholesterol (Del C 
Valdes Hernandez et al., 2017; Ward, 2005), LDL cholesterol (Raz et al., 
2012) or HDL cholesterol level (Mosconi, 2018), the majority of the 
evidence (5 out of 9 cross-sectional and 2 out of 3 longitudinal studies) 
suggested that higher levels of “bad” cholesterol (total and LDL) relate to 
smaller total and regional GM volumes. 

3.5. Cerebrovascular markers 

Twelve cross-sectional and four longitudinal studies with a mean 
follow-up time of 5 years across studies assessed cerebrovascular cor-
relates of diet markers, with a combined sample of 10,315 participants 
(56 % female). Overall, worse dietary health in most (but not all) studies 
were generally associated with poor measures of cerebrovascular health 
such as higher occurrence of white matter hyperintensities and infarcts, 
larger ventricular volume and hypoperfusion (Table 5). 

In six cross-sectional studies, higher WMH was correlated with 
markers of poor DM health, such as high LDL cholesterol, high beverage 
(>2/day) or sugary soft drinks intake (>3/day) and low ω-3 to ω-6 ratio 
(Chung et al., 2018; Debette et al., 2010, Debette, 2014; King et al., 
2014; Pase, 2017; Suwa, 2015). A similar trend was shown in three 
longitudinal studies, where higher WMH was associated with lower fish 
intake, more fats, proteins, saturated fats and sodium (Del C Valdes 
Hernandez et al., 2017), higher homocysteine level (Raz et al., 2012), 
higher total and HDL cholesterol (Willey et al., 2014), lower total to HDL 

cholesterol ratio (Dickie et al., 2016). Sugary soft drink consumption 
was also linked to a higher percentage of brain infarcts (Pase, 2017), 
whereas Willey et al. (2014) found no longitudinal association between 
cholesterol level and brain infarcts. 

Some dietary patterns (higher homocysteine level, low dairy con-
sumption, oily fish and iodine, higher total caloric intake (kcal/day), 
fats, proteins, sodium and total cholesterol) were also linked with larger 
ventricular volumes in one cross-sectional (Chee et al., 2009) and one 
longitudinal study (Del C Valdes Hernandez et al., 2017). Although re-
lationships with CBF have been far less studied, higher triglyceride 
cholesterol level (Raz et al., 2012) and lower metabolic syndrome 
(Birdsill et al., 2013) were associated with lower CBF, measured using 
arterial spin labelling. 

However, some studies also found no association between WMH and 
intake of fruit juice (Pase, 2017), different vitamins and micronutrients 
(Hooshmand, 2016), a health-aware diet (Booth et al., 2014), intake of 
iodine or the total caloric intake (in kcal/day; Del C Valdes Hernandez 
et al., 2017), and cholesterol level at baseline (total, HDL and LDL 
cholesterol level, dys- and hyperlipidaemia; Del C Valdes Hernandez 
et al., 2017; Dickie et al., 2016; Suwa, 2015; Willey et al., 2014). 
Similarly, studies also report no associations between CBF and LDL 
cholesterol (Birdsill et al., 2013). Despite these discrepancies, the ma-
jority of reviewed studies have linked cerebrovascular abnormalities 
with at least one ‘unhealthy’ dietary marker. 

4. Discussion 

4.1. Diet, metabolism and brain atrophy 

Most of the articles discussed in this review suggest that diets high in 
meat, refined carbohydrates (including sugary beverages), saturated 
fats, processed foods, protein, caffeine and alcohol (as well as wine 
intake) such as the Western and the Paleo diet are related to poorer 
indicators of brain structure. Higher total and LDL cholesterol levels, but 
lower HDL cholesterol levels are also related to worse brain health. On 
the other hand, caloric restriction, diets such as a health-aware diet or 
the MeDi, diets rich in fruits and vegetables, ω-3 fatty acids and anti-
oxidants, and low in meat, eggs and spirits are related to better brain 
health indicated by larger brain volumes, more efficient connectivity 
and better cerebrovascular health, although there are contrasting trends 
for each of these associations (Table 6). 

In the following sections, we discuss the physiological mechanisms 
that may underpin the diet-brain relationship and delve into the in-
consistencies between study methodologies and findings. We conclude 
with a recommendation for dietary choices and discuss future research. 

4.2. Physiological mechanisms underlying the association of poor DM 
markers with worse brain health outcomes 

Our review observes that poor dietary markers were largely associ-
ated with measures of poor cerebral health. While the specific physio-
logical mechanism for this link is not well understood, evidence suggests 
that cholesterol impairs the supply of oxygen-rich blood in the brain via 
the accumulation of plaques in arteries. This can lead to neuronal health 
deficits such as cerebral hypoperfusion, damage to the blood brain 
barrier, oxidative stress, and the occurrence of ischemic insults (see 
Schmahmann, 2003 for more information). Unhealthy dietary markers 
can also produce a loss of neuronal homeostasis (Shalev and Arbuckle, 
2017), an increase in neuroinflammation (Swarbrick, 2014), and can 
ultimately lead to neuronal dysfunction or death. Neuroinflammation 
has a negative influence on axonal health and myelination and can be 
indirectly gauged by lower FA and higher radial diffusivity in WM. We 
observed this association between lower FA and higher LDL and lower 
HDL across several studies in this review. 

On the other hand, we also observed that caloric restriction, a health- 
aware diet, higher score of the AHEI-2010 and the MeDi were related to 
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lower levels of brain atrophy. Lower caloric intake (kcal), higher ω-3 
fatty acid and antioxidant-rich food showed a relationship with better 
fibre integrity and functional connectivity, suggesting that ω-3 fatty 
acids might buffer age-related declines in these brain markers. Further 
support for nutritional interventions comes from the studies which 
investigated antioxidant nutrients such as lycopene, lutein and poly-
phenol (e.g. included in red wine and blueberries), vitamin E and C and 
the dietary ferric-reducing antioxidant power score (Devore, 2013), all 
of which had a positive impact on brain health. Those antioxidative 
nutrients act protectively against free radicals, thereby protecting the 
brain from oxidative damage. 

Ultimately, the diet-brain relationship can impact cognition and 
memory. For example, unhealthy diets (Boraxbekk et al., 2015), and 
higher LDL cholesterol level (Meusel, 2017) have been related to deficits 
in cognitive performance (Kharabian Masouleh et al., 2018; Zamrozie-
wicz, 2016) such as working memory performance (Boraxbekk et al., 
2015; Meusel, 2017; Witte et al., 2014b), attention (Kohn, 2016), and 
episodic memory performance (Boraxbekk et al., 2015; Kharabian 
Masouleh et al., 2018; Prehn, 2016). Conversely, in the reviewed 
studies, the beneficial effects of polyunsaturated fatty acids were 
observed in regions that support executive function (prefrontal cortex), 
memory (hippocampus), and emotion (amygdala; Talukdar et al., 2018). 
Previous research also confirms the relationship between antioxidant 
nutrient intake and better attention and executive function (Vauzour, 
2017; Zwilling et al., 2019), improved cognition (e.g. Bajerska et al., 
2014; Martínez-Lapiscina, 2013; Wengreen, 2013; Ye, 2013) and 
decreased risk for mild cognitive impairment (MCI) and dementia 
(Galbete, 2015; Morris, 2015; Psaltopoulou, 2013; Scarmeas et al., 
2006a, b; Trichopoulou, 2015), and progressing from MCI to Alz-
heimer’s dementia (Singh, 2014). 

Thus, given the negative effects of inflammation and oxidative stress 
on brain health, preventing these responses through a healthy diet rich 
in antioxidant, anti-inflammatory factors could conceivably be a pre-
ventive nutritional strategy for healthy brain and cognitive ageing. 
Moreover, this review suggests that even though high LDL cholesterol is 
discussed as the main risk factor for heart disease and stroke (American 
Heart Association), both high LDL and low HDL cholesterol could be 
used as proxy markers for an unhealthy diet-brain relationship. 

In summary, we observed support for the following dietary health 
recommendations in order to maintain brain connectivity:  

• maintain healthy total and LDL cholesterol  
• follow certain diets such as a ‘health-aware’ (Booth et al., 2014; 

Jacka et al., 2015) or a MeDi diet  
• include a balanced intake of different vitamins and micronutrients 

with the higher consumption of fruit and vegetables (each four-five 
servings per day), fish, antioxidative nutrients such as lycopene, 
lutein and polyphenol (e.g. included in red wine and blueberries), 
seeds, nuts, whole grains and vitamin E and C, adequate vitamin B, 
B12 and minerals levels and the low consumption of meat, refined 
carbohydrates/sugar (including sugary beverages), saturated and 
trans fats, processed foods, and alcohol, reducing the total caloric 
intake (kcal/day), increase ω-3 fatty acids and have a lower ω-3 to 
ω-6 ratio. 

This recommendation is in accordance with the Memory Nutrition 
Program in the USA (Emerson-Lombardo et al., 2006; Wolf, 2012) and 
the American Heart Association, but in this review, we have summarised 
additional evidence for their beneficial effects on brain structure, con-
nectivity and function. 

4.3. Inconsistencies/bias in findings related to methodology 

We identified variations in measurement techniques, MRI analysis 
methods, and confounding covariates which may have influenced study 
outcomes. 

4.3.1. MRI analysis and acquisition bias 
Although the reviewed results from volume and connectivity ana-

lyses are mostly consistent across techniques (see e.g. 3.4), it is impor-
tant to note that different analysis techniques can introduce substantial 
bias. Several of our reviewed studies only used region of interest or 
cluster peak region analyses which can underestimate the influence of 
other brain regions or networks. This is not the case for VBM or whole- 
brain network studies, which examine global effects and their in-
teractions. MRI studies also generally suffer from a ‘healthy participant’ 
bias, such that participants in this study were not at the extremes of the 
health spectrum (e.g. all reviewed studies excluded extremely obese 
participants due to the bore size of the MRI scanner). This may have 
influenced the true scale of the effect of dietary health on brain ageing. 

Fig. 2. Age distribution in the reviewed samples of 52 articles. A shows the mean age and standard deviation (SD) of young (20–35 years), middle (36–55 years) and 
older adults (56 years and older). B shows the age distribution in quantiles considering the age range of each study. Some studies assessed multiple age quantiles. 
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4.3.2. The role of age and sex: Findings from young, middle- and older aged 
adults 

Across all reviewed studies, most findings about the relationship 
between DM and brain markers were consistent across age groups, but 
the majority of studies investigated associations only in older adults (see 
Fig. 2, 45 studies). Thus, conclusions about middle-aged (six studies) or 
young adults (four studies) have to be drawn with caution. We therefore 
recommend that future studies focus on younger age ranges, as early 
dietary interventions may stand to offer long-term benefits on brain and 
cognitive health. Some studies have shown an interaction of age with a 
higher summary score of unhealthy DM markers including higher BMI, 
BP, glucose and diabetes; King et al., 2014) and total plasma homocys-
teine (Raz et al., 2012) which was associated with more WMH. No 
reviewed study assessed the interaction between age and unhealthy diet 
markers on brain volumes and connections. 

The evidence suggests that anatomical or hormonal differences be-
tween men and women may influence the effect of obesity on brain 
volume and connectivity (Mueller, 2011, discussed by Boccardi et al., 
2006; den Heijer et al., 2003). In this review, some studies failed to 
report the sex distribution of the sample, and a few studies on caloric 
restriction (Prehn, 2016) and palaeolithic diet (Boraxbekk et al., 2015) 
were conducted only on a female sample, thus, results cannot neces-
sarily be generalized to the entire population without further research 
on gender balanced samples. Nonetheless, some of the reviewed studies 
which were conducted on solely female samples (Boraxbekk et al., 2015; 
Pottala, 2014; Prehn, 2016) showed similar diet - brain associations as 
studies on mixed sex samples. Moreover, while most studies used sex as a 
covariate in their analyses (see Willette and Kapogiannis, 2015 for a 
review), only one study performed a sex stratified analysis (Kohn, 2016). 
Thus, additional studies are needed to elucidate potential sex differences 
in the diet - brain relationship. 

4.3.3. Sociodemographic and socioeconomic bias 
Environmental factors such as food availability and quality differ 

across countries and could affect the brain ageing process (in Bamshad, 
2005; Chee et al., 2009; Kirkwood, 2005). In this review, 49.3 % of in-
dividuals from 44 studies were from North America, of which the large 
majority was from the US. 40.5 % of participants came from Europe and 
only 9.8 % from Asia (Fig. 3). Three studies controlled their analyses for 
the ethnicity of the participants (Akbaraly et al., 2018; Berti et al., 2015; 
Gu, 2015), but only two of these studies examined the diet - brain 

relationship in multiple (more than two) ethnic groups, including White, 
African American and Hispanic participants (Berti et al., 2015; Gu, 
2015). No reviewed sample was acquired in South America, Africa or 
Australia which could bias the conclusions from this review (Fig. 3). In 
general, there was insufficient data to estimate differences between 
countries in terms of existing diet - brain associations. For instance, the 
same diet marker such as the MeDi diet could be assessed differently 
across the world due to different dietary habits: lower intake of legumes 
in the Swedish population (Titova et al., 2013b) compared to the US 
population may explain the significant result of Gu, 2015 compared to 
Titova et al. (2013a). Future research on brain health should especially 
be acquired in Asian countries, as the most rapidly growing ageing 
population in the world (Chee et al., 2009). 

The literature suggests that socioeconomic and lifestyle factors such 
as income (Sattler et al., 2012), education (Stern et al., 1992), and ex-
ercise (Radak, 2010; Scarmeas, 2009) covary with obesity, and are risk 
factors for cognitive decline or neurodegeneration (discussed in Ronan, 
2016). Although some studies in this review used participants’ socio-
economic status (e.g. status in society, income, socio-demographic in-
formation) as covariates (Berti et al., 2015; Gu, 2015; Haller, 2018; 
Jacka et al., 2015, 2015; Luciano, 2017; Pottala, 2014), most studies 
failed to include socioeconomic variables. Thus, it is difficult to draw 
conclusions about whether the diet - brain associations described here 
were driven, at least in part, by socioeconomic status and geography. 

4.3.4. Other relevant brain areas 
We noticed a relative lack of studies reporting relationships with diet 

in subcortical regions of the brain. This is surprising given the large body 
of animal work highlighting the importance of subcortical structures, 
such as the hypothalamus, in relation to feeding behaviour (Kolber et al., 
2008; Ongur and Price, 2000). In humans, the hypothalamus co-
ordinates the activity in the gut and integrates visceral functions 
through the hypothalamic-pituitary axis and is connected with 
limbic-system structures such as the hippocampus, the amygdala and the 
cerebral cortex. Investigating subcortical rather than cortical brain re-
gions is often hindered by a lower signal-to-noise ratio and the need for a 
higher spatial resolution. However, these challenges can be overcome 
with optimized pulse MRI sequence and appropriate preprocessing 
steps. Future studies should consider the importance of subcortical 
structures in association with diet markers. 

Fig. 3. Origin of samples in the studies examined in this review and covered samples sizes. The figure shows the number of studies in each country/region in the 
world. The sample size of each country in percent in relation to the whole reviewed sample is for the US - 52.6%, Germany: 4.5 %, UK: 5.7 %, Netherlands: 25.4 %, 
Sweden: 3 %, Switzerland: 1.5 %, Canada: 0.1 %, Singapore: 1.3 %, Japan: 1.5 %, Iraq: 1 %, Taiwan: 3.8 % and Spain: 0.3 %. 
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5. Conclusion 

We reviewed studies investigating a range of dietary markers such as 
vitamins, ω-3, ω-6, intake of fruits, proteins, Mediterranean diet etc. and 
metabolic markers, such as cholesterol, glucose and blood pressure. The 
review offers support for an association between lower dietary quality 
and reduced brain volume and connectivity, especially of the default- 
mode network and the frontal and temporal lobes. Specifically, associ-
ations between ‘healthy’ diet markers and larger GM volume were found 
in the frontal, temporal, parietal, cingulate and entorhinal cortex and 
the hippocampus. Other studies found a relationship between frontal 
and temporal WM volume and ‘healthy’ diets. The influence of diet 
markers on functional connectivity was especially pronounced in the 
DMN and the sensorimotor and attention networks. WM connectivity 
was only examined by a few studies, but consistent associations were 
shown for the SLF and ILF, the CC and IFOF. Further, there was 
comparatively little research on subcortical structures, despite their 
importance in relevant animal work (e.g. hippocampus: information 
processing, memory; hypothalamus: homeostasis, feeding behaviour). 

This systematic review concludes that a wide range of regional brain 
measures are associated with diet markers, however there are in-
consistencies in research methods and results on how specific diets affect 
brain connectivity and volume. Future studies establishing the effect of 
complete diet measures for the brain are needed. We also discussed the 
importance of considering the relationship between age, sex and so-
cioeconomic and demographic markers and diet factors and the need for 
longitudinal and more interventional studies to assess the influence of 
confounding variables on the diet - brain associations. 

Funding 

DEAJ is supported by HDH Wills 1965 Charitable Trust (1117747). 
SS is supported by an Alzheimer’s Society Research Fellowship (Grant 
Ref: 441) and the Academy of Medical Sciences/the Wellcome Trust/the 
Government Department of Business, Energy and Industrial Strategy/ 
the British Heart Foundation/Diabetes UK Springboard Award (Grant 
Ref: SBF006\1078). Work on this study was supported by the UK Na-
tional Institute of Health Research (NIHR)Oxford Health Biomedical 
Research Centre (BRC). The Wellcome Centre for Integrative Neuro-
imaging (WIN) is supported by core funding from the Wellcome Trust 
(203139/Z/16/Z). The views expressed are those of the authors and not 
necessarily those of the NHS, the NIHR or the Department of Health. KPE 
was supported by UK Medical Research Council Grants G1001354 and 
MR/K013351/1, the HDH Wills 1965 Charitable Trust (1117747), and 
the EU Horizon 2020 Programme “Lifebrain” (Grant No. 732592). 

Declaration of Competing Interest 

The authors declare no competing financial interests. 

Acknowledgments 

DEAJ conducted the meta-analysis and wrote the manuscript. SS 
supervised the work and reviewed the manuscript. DEAJ and VL inde-
pendently scored the study quality. All authors edited the manuscript. 
We would like to thank the study authors who kindly provided addi-
tional information about their studies.  

Fig. A1. Study identification and selection process.  

D.E.A. Jensen et al.                                                                                                                                                                                                                             



Ageing Research Reviews 70 (2021) 101360

13

Appendicx A 

A1 : Search terms for MEDLINE and Ovidsp (Embase and PsycINFO)  

1) diet*.mp OR food.mp OR nutritio*.mp OR cholesterol.nm OR lipid.nm OR vitamin*.nm OR carbohydrate.nm OR amino acids.mp  
2) ageing.mp OR aging.mp  
3) 1 and 2  
4) exp magnetic resonance imaging/ OR exp brain/ OR brain connectivity.mp OR brain network.mp OR functional connectivity.mp OR structural 

connectivity.mp OR diffusion tensor imaging.mp OR resting state fMRI.mp  
5) 3 and 4  
6) limit 5 to (english language and humans and (journal article or letter))  
7) NOT review articles 

A2 : Study identification and selection process  

A3 : Results of the quality assessment in 52 studies  

Study/Authors Risk of bias (DEAJ and VL) 

Akbaraly et al. (2018) good 
Berti et al. (2015) good 
Birdsill et al. (2013) good 
Booth et al. (2014) fair 
Boraxbekk et al. (2015) good 
Bowtell et al. (2017) good 
Brickman et al. (2014) good 
Chee et al., 2009 good 
Chung et al., 2018 good 
den Heijer et al., 2012 good 
Devore, 2013 good 
Dickie et al. (2016) good 
Erickson et al. (2008) good 
Gonzales, 2011 fair 
Gu, 2015 good 
Haller, 2018 fair 
Del C Valdes Hernandez et al. (2017) fair 
Hoogendam, 2012 good 
Hooshmand, 2016 good 
Huhn et al., 2018 good 
Jacka et al. (2015) good 
Kharabian Masouleh et al. (2018) good 
King et al. (2014) good 
Koschack et al. (2009) good 
Leritz, 2011 fair 
Lindbergh, 2018 good 
Luciano, 2017 good 
Meusel, 2017 fair 
Mosconi, 2018 fair 
Mueller, 2011 good 
Mueller, 2015 good 
Narita, 2009 fair 
Ottino-González, 2017 fair 
Pase, 2017 good 
Petrie, 2017 good 
Pottala, 2014 good 
Prehn, 2016 fair 
Raz et al. (2012) good 
Spielberg, 2017 good 
Suwa, 2015 fair 
Talukdar et al. (2018) good 
Titova et al. (2013a) good 
Titova et al. (2013b) good 
Walhovd, 2014 good 
Ward, 2005 fair 
Willey et al. (2014) good 
Williams, 2013 good 
Witte et al. (2014b) good 
Witte et al. (2014a) good 
Zamroziewicz, 2016 good 
Zamroziewicz et al. (2018) good 
Zwilling et al. (2019) good  
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A4 : Assessed multi-component diets (11 diets in n = 10 studies) 

Mediterranean diet (MeDi) score was studied in four articles (Gu, 2015; Luciano, 2017; Mosconi, 2014; Titova et al., 2013b) by obtaining dietary 
information of each individual using FFQs. In all reviewed studies, the MeDi score was calculated for each participant by summing the scores of 
different food components. An assigned value of 0 or 1 was used for each component, using caloric-adjusted sex-specific medians as cut-offs. Further, 
exclusions were made for incomplete data and extreme energy intakes. Thus, for beneficial components, scores at or above the median were assigned a 
value of 1, whereas for detrimental components, scores at or above the median were given a value of 0. A higher MeDi score indicated closer adherence 
to the MeDi. In all of those studies, a higher MeDi score indicated a diet rich in fruits and vegetables, legumes, cereals, fish and higher ratio of 
monounsaturated fats to saturated fats, and low in meat and dairy products. Notably, while a moderate amount of alcohol intake is a characteristic 
component of the MeDi, the threshold for moderate alcohol intake varied across studies slightly. Further, the food components, the number of items in 
the FFQ and length of the acquisition period differed across the four studies in this review (Gu, 2015; Luciano, 2017; Mosconi, 2014; Titova et al., 
2013b). 

In Gu, 2015 the MeDi score (ranging 0–9) was obtained using nine food components which were calculated for each participant based on a 61-item 
FFQ over a period of a year. A value of 1 was assigned for the six beneficial components (including fruits, vegetables, legumes, cereals, fish and the 
ratio of monounsaturated fats to saturated fats) and a value of 0 was assigned for the two components presumed to be detrimental (such as meat, dairy 
products). Further, mild to moderate alcohol consumption (0–30 g/day) was assigned a value of 1. 

In Mosconi, 2014 the MeDi score (ranging 0–9) was obtained using a 61-item FFQ over a period of four months. The MeDi score was calculated 
equal to Gu, 2015, whereas the thresholds for mild to moderate alcohol consumption was specified with >0 drinks per week and <2 drinks per day in 
the previous year. 

In Luciano, 2017 information from 168-item four-day weighted FFQ was used to obtain the MeDi score (ranging 0–9) in each individual based on 
components equal to (Gu, 2015). Moderate alcohol consumption was a positively scored component. It was defined as between 10 and 50 g alcohol per 
day for men and between 5 and 25 g per day for women. 

In Titova et al. (2013b) the MeDi score (ranging 0–8) was obtained using a 7-day dietary registration containing about 1500 food items, drinks, and 
recipes. The score included beneficial (vegetables, legumes, fruits and nuts, cereal, fish and ratio of monounsaturated lipids to saturated lipids) and 
detrimental (meat, poultry, and dairy products) components and moderate alcohol intake with 10–50 g/day for males and 5–25 g/day for females, 
respectively. Because Titova et al. (2013b)’s study was in a Swedish population compared to the Greek population in Trichopoulou et al. (2003), some 
modification in the scores were made: 

In this score, polyunsaturated fatty acids replaced monounsaturated fatty acids when estimating dietary fat quality since in a traditional Swedish 
diet saturated and monounsaturated fats have similar food origins. In addition, because of their very low intake, nuts and seeds were excluded, and 
dietary leguminous plants were pooled with vegetables in our score. 

The reported intake of potatoes was added to cereals, because potato consumption contributes considerably to carbohydrate intake in the Swedish 
population of older adults. 

The AHEI-2010 in Akbaraly et al. (2018) was performed 3 times over 11 years of follow-up (1991–1993 and 2003–2004). AHEI-2010 assessment is 
based on 11 components, including six beneficial components (vegetables, fruit, whole grains, nuts and legumes, long chain omega-3 fats, and 
polyunsaturated fatty acids) and four components for which avoidance or lowest intake are supposed to be ideal (sugar-sweetened drinks and fruit 
juice, red and processed meat, trans fat, and sodium). In the original score in Chiuve et al., 2012, moderate alcohol intake was considered to be ideal 
(similar to the MeDi score); however, for brain related outcomes, the latest evidence supports to recommend avoidance or low consumption of alcohol 
rather than moderate consumption (Opie, 2017; Topiwala, 2015). 

The health-aware diet in Booth et al. (2014) was defined as a consumption of more fruits and less meat, eggs and spirits. This was measured using 
a component score derived in Mõttus, 2013 based on responses to a 9-point FFQ (ranging from rarely or never to seven or more times per day) which 
contained a list of 168 foods and drinks, grouped under major food groups. 

Jacka et al. (2015) distinguished between the unhealthy "Western" dietary pattern and the healthy ’prudent’ dietary pattern. Both are 
orthogonal diet factors which were established from the FFQ. Higher scores represented greater levels of consumption. The “prudent” (healthy) diet 
was characterized by the consumption of fresh vegetables, salad, fruit and grilled fish. In contrast, the “Western” (unhealthy) diet was characterized by 
the consumption of roast meat, sausages, hamburgers, steak, chips, crisps and soft drinks. 

The diet intervention of the paleolithic diet with Nordic Nutrition Recommendations (PD þ NNR) in Boraxbekk et al. (2015) was assessed 
using four-day self-reported food records at baseline and at 6 months. The energy intake in PD consisted of 30 % protein, 40 % fat and 30 % car-
bohydrates. Recommended was a high intake of mono- and polyunsaturated fatty acids, lean meat, fish, fruit, vegetables, root vegetables, eggs, and 
nuts (see Mellberg, 2014). The NNR diet was aiming for an energy intake of 10 % protein, 25–30 % fat, and 55-60 % carbohydrates, mainly in low-fat 
dairy and high-fibre products. Different to other multi-components diet, Boraxbekk et al. (2015)’s study included an intervention with eight meetings 
between a dietician and the participants during the first six months of the study, where participants got information about dietary effects on health, 
how to change behaviour, and group discussions. Further, both diets were ad libitum without any restrictions in total calorie intake. 

King et al. (2014) assessed diet as a summary score of different diet and metabolic variables. Those included BMI, diabetes mellitus, BP and serum 
glucose (fasting, or non-fasting glucose). 

The total caloric intake or energy intake was measured in kcal/day in Del C Valdes Hernandez et al. (2017). 
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