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Prediction of tidal currents in the Inner Sound
of the Pentland Firth using RTide

Thomas Monahan, Tianning Tang, Stephen Roberts and Thomas A.A. Adcock

Abstract—The design and operation of tidal stream
energy farms will require the accurate prediction of tidal
currents from field data. In the present paper we compare
the performance of a physics based flow model, the tradi-
tional harmonic analysis method, and a newly developed
code RTide. RTide is based on the Response Method
proposed by Munk and Cartwright in the 1960s and uses
machine learning to overcome the key disadvantages of
their original approach. We use field data from the Meygen
site in the Inner Sound of the Pentland Firth. We find RTide
predictions based solely on the field data outperform both
the flow model predictions and the currents predicted by
harmonic analysis. Interestingly, feeding the physics-based
flow model into RTide as an additional input does not
outperform the predictions based on the field data alone.
However, RTide can still be used as a correction tool to
physics-based flow models.

Index Terms—Tidal prediction, Response Method, Tidal
stream resource

I. INTRODUCTION

He key advantage of tidal energy over other re-

newables is that it is, in principle, predictable
indefinitely far in advance [1]. Tidal flows are primarily
driven by the movements of astronomical bodies which
are, for practical purpose, known both in the past or
in the future. However, whilst this is true in theory,
accurate prediction is challenging in practice. Water
levels can in general be predicted accurately although
meteorological effects, as well as the disruption from
the operation of the barrage itself does provide a
challenge [2]. However, the focus of the present paper
is on tidal streams where prediction of the currents
can be considerably harder. There are two key reasons
for this. Firstly, tidal currents are inherently more non-
linear than water levels and this means the standard
prediction technique of harmonic analysis less suitable
for analysis [3]. Secondly, tidal current measurement is
expensive and multiple spatial meausrements will be
required to build up an accurate prediction of currents
across a candidate site. This means that there is a
pressue to make predictions from very short time series
which again makes predictions more difficult.
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One approach to tidal prediction is to run a physics
based flow model, typically solving the shallow water
equations [4]-[6] or a layered model [7], [8]. However,
these can struggle to accurately model the extreme
flows present in a fast tidal race, partly due to the
inherent simplifications needed to the physics [9] but
also because boundary conditions (i.e. bathymetry and
bed drag) are only imperfectly known. As such it
is neccesary to analyse field measurements and use
these as the basis for predictions. The standard anal-
ysis technique for tidal measurements is harmonic
analysis. This represents the tidal signal as a number
of sinusoidal constituents which can be summed to
produce a prediction. A number of implementations
exist [10], [11] however, as noted above, this technique
is not ideally suited to highly non-linear flows. Some
attempts have been made using purely data-driven
techniques, which typically extrapolate a time-series
[12]-[15]. However, these do not provide any insight
into the physics and will have a very limited time
horizon.

The approach of the present paper is to use a Re-
sponse based approach. This builds on the seminal
work in the 1960s by Munk and Cartwright [16].
Recent work has used machine learning to recast this
approach, developing a code we have called RTide.
In principle his approach can tackle far more non-
linear problems than traditional harmonic analysis and
actually retains more of the inherent physics than
the harmonic method. It also naturally lends itself to
the inclusion of forcing from non-astronomical factors
(i.e. meteorology) although that is not something we
explore in the present paper.

We choose to explore this using the Inner Sound
of the Pentland Firth as a case study. The Pentland
Firth is widely considered to be the most important
tidal stream energy site in the world. The site has been
studied extensively by numerous authors [17]-[23]. The
Inner Sound (colloquially known as the Meygen site) is
currently being developed and as such has long-term
tidal current measurements and as such is ideal for
the present study. In this study we compare predic-
tions of the measured current using various different
techniques and analyse the implications for predicting
power.

II. METHODS
A. Response Method

The response method exploits the fact that the re-
sponse to the gravitational potential V (¢) produced by
the Moon and Sun is weakly nonlinear and influenced
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by past, present, and future values of the tidal potential
[16]. To capture this, the potential is expanded in
spherical harmonics as
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where g is the gravitational constant, a]*(¢) and 4" ()
denote the complex amplitudes associated with the
gravitational potential, and X" and Y, are spherical
harmonics at respective order m and degree n.

The objective of the response analysis is to learn
the transfer function, defined by learned responsed
weights w' = x' + iy;,', between the tidal potential
V(t) and the observations ((t). The linear response
prediction is constructed by convolving the learned
weights with the expanded complex gravitational po-
tential ¢’ = a]* + b}, yielding
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This formulation, which can be interpreted as a
solution to the Laplace Tidal equations after integrating
out ocean topography, serves as the foundation for
incorporating nonlinear effects.

Nonlinear interactions are introduced by forming
sums and products of the linear response terms. In
general, the " order response denoted (R”) is given

by
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which shows that the number of possible interaction
terms grows exponentially with the order of nonlin-
earity. Traditional approaches often pre-select a sub-
set of these terms—typically by sequentially forming
products of the linear components—which assumes
that nonlinearity is locally generated and may lead
to an underestimation of the variance for higher-order
interactions.

For tidal current prediction, the method is extended
to a coupled response model that simultaneously ad-
dresses the two orthogonal velocity components. The
coupled model is written as
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where the weight matrix W' (s) includes diagonal
terms representing the individual responses in the U
and V directions and off-diagonal terms that capture
their interactions.

To overcome the challenge of predefining nonlinear
interactions, we adopt the machine-learning response
method developed by Monahan et al. [24], which em-
ploys a three-layer perceptron to automatically learn
the complete set of interactions directly from the data
using gradient decent. The approach is implemented
in the open-source RTide python package.
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Fig. 1. Schematic of the coupled Response method for tidal
current prediction. Inputs consist of the lagged gravitational input
potential G(t — 79),--- ,G(t — 7s), and optionally the numerical
model M., M,.

B. Data

Contiguous data is obtained over 2020 and 2021 from
a seabed mounted ADCP located in the Inner Sound.
Data is sampled every 10 minutes and was cleaned to
remove several erroneous measurements and dropout
periods. Concurrent numerical model predictions are
provided from a depth averaged MIKE21 model which
is operationally used at the Meygen site. At present,
this is the standard approach used operationally by
developers at the site to characterise the flow. Details of
the shallow water model are not available but, given
the importance of the data to operational use of the

Ts, )site, we assume that the modelling was carried out to

a high standard and based on the best available data
and best practice.

C. Models

A description of the models employed for the sub-

sequent case-studies is as follows:

« RTide: Standard response model which only takes
gravitational forcing as input.

o RTideM: Response model which takes MIKE21
model as additional input.

o Mike: Raw MIKE2?1 flow model output.

o MikeC: MIKE21 flow model with the empirical
correction factor used operationally.

o UTide: Standard iteratively-reweighted least-
squares harmonic analysis with constituents
determined by the record length using a Rayleigh
criterion of 1 [10].

ITI. CASE STUDY

We here look to evaluate our approach against em-
pirical harmonic analysis and the operational MIKE21
flow model used at the Meygen site.

A. Experimental Setup

The dataset is partitioned into train and test sets such
that RTide and UTide models are trained on 1.5 years of
data from 2020 to mid 2021. Models are then evaluated
on unseen data from the second half of 2021.
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B. Results

Figure 2 shows 48 hours of predictions on the test-
set. Observations have been low-pass filtered with a
cut-off frequency of 12 cycles per hour — this low-
passed data was also utilized for training. An example
of models trained and tested on unfiltered data is
provided in the Appendix.

The dominant current at the site is in the east/west
(U) direction. This current is strongly semi-diurnal
and relatively undistorted. For the observations shown,
the UTide can be seen to overestimate peak flow
values, with the RTide predictions sitting closer to
the observed values. Interestingly, while the MikeC
model seems to mimic the distorted profile, these
variations can be overestimated, and in some cases be
the opposite of the observed modulation. The UTide
residuals exhibit a biomodel distribution around zero,
and the MikeC and RTide distributions are normally
distributed, albeit with the RTide residuals exhibiting
lighter tails. This is nicely reflected by Table I, which
shows a reduction in RMS error by RTide of 16%
and 5% over the UTide and MikeC models respec-
tively. Table I also compares the performance of the
uncorrected MIKE (Mike) and RTide MIKE (RMike)
models. Interestingly, inclusion of the flow model as
an additional input into RTide actually worsens model
performance when trained on 1.5 years of data. When
using less data, e.g. shorter than 6 months, we do
find an improvement in RMike over RTide (results not
shown).

The less dominant North/South (V) direction is more
revealing as subtle changes in direction are more rel-
evant. The observed time-series shows a clear overes-
timation of the V component by MikeC model. This
yields a heavily skewed residual and a correspondingly
high RMS error of 0.234 m/s. In contrast, the UTide
predictions tend to severely underestimate the first
peak of the quarter-diurnal signal leading to a broad
and skewed residual distribution. While this is less
egregious than the MikeC predictions, it yields an
RMS error of 0.183 m/s. RTide does well to capture
the quater-diurnal structure of the signal, leading to a
reduced RMS of 0.152 m/s, but misses out on some
of the higher frequency peaks. Again, we find that
inclusion of the numerical model into the response
method actually makes performance marginally worse.
The reasons for this degradation in perfromance are
unclear.

TABLE I
RMS ERRORS FOR U AND V COMPONENTS, AND TOTAL ERROR
MAGNITUDE Etorar OVER 180 DAY FORECAST ON TEST-DATA.

Model  u (RMS error) v (RMS error)  Eigal
Mike 0.325 0.236 0.402
MikeC 0.305 0.234 0.384
UTide 0.343 0.183 0.389
RMike 0.292 0.154 0.330
RTide 0.289 0.152 0.326
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IV. POWER PREDICTION

While flow predictions are interesting for site charac-
terization, the relevant quantity for operational usage
is the associated power produced by the flow [12]. We
here look to quantify the implications of inaccurate
flow predictions on forecasted power production. To
do this, we adopt a simplified power curve:

0 0 S V;& < chtfin
P =23 05C,pAVE  Vewr—in <Vi < Viatea ()
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where C,, is the power capture coefficient (0.4 — 0.5),
p is the water density, A is the swept area of the
blades (817), V; is the tidal current speed, Vey—in is the
minimum current speed for turbine operation (1m/s)
and V,4¢eq is the rated operational speed (3m/s) [25].
In this idealised analysis we assume that there is only
a small impact on the flow from the turbines (see for
instance [26]. We transform model observations and
predictions to the equivalent normalized power by
applying Equation 5 along the dominant channel flow
direction (as determined by derived harmonic analysis
ellipse parameters).

Figure 3 shows kernel density estimates of the distri-
bution of power prediction errors and Table II shows
the total power error over the 180 day test-set. It can
be seen in Figure 3 that RTide, UTide, and MikeC
models are separated by less than 1 percent across
average errors. However, it can be seen that RTide has
a much higher estimated density at low power errors.
The cause for the departure between average and total
power is a consequence of the heavier tails of the
UTide and MikeC models. The 95" percentile errors
are 15.8%, 20.2%, and 20.9% for RTide, UTide, and
MikeC respectively. Since tidal energy production is a
cubic function of velocity, even small under- or over-
estimations in current speed can lead to large power
deviations, amplifying the impact of extreme errors.
This highlights the importance of not only minimizing
mean errors but also understanding the structure of
error distributions when evaluating long-term energy
yield predictions.

TABLE II
TOTAL NORMALIZED POWER PERCENTAGE ERROR OVER 180 DAY
FORECAST ON TEST-DATA.

Model B Error
Mike 33.1%
MikeC  22.4%
UTide  24.8%
RMike 15.2%
RTide 12.3%

V. DISCUSSION

The preceding case-studies demonstrate the advan-
tages of our machine learning response method for
the prediction of tidal currents. A clear result from
this analysis is that response approaches outperform
harmonic analysis across the board. A separate paper
(under review) has shown that these improvements
actually increase as the amount of data decreases.
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Fig. 2. Comparisons of model predictions on unseen data. V velocity is that in the east/west direction with U velocity in the north south
direction. Days selected are representative of the data. Kernel density estimates of the residuals are computed for the entirety of the 180 day
test-set. Observations are low-passed filtered with a cut-off frequency of 12 cycles per hour.

Indeed the response approach can make reasonable
predictions even when trained on timeseries of less
than a month which is particularly valuable for tidal
energy applications where it is expensive to deploy
ADCPs and there is a trade-off between long measure-
ments at a few locations against shorter measurements
at many locations across a site.

We advocate for the replacement of conventional
harmonic analysis predictions with response based pre-
dictions when accuracy is paramount. A valid criticism
of our approach is the lack of interpretability which
is naturally afforded by the harmonic framework (for
intance it is easy to understand the magnitude of
an “M; current” or the phase lag between the water

level slope and the current for a given constituent. A
simple solution is to estimate the harmonic constituents
directly from a response method prediction which has
been shown to yield superior constituent estimates
[24].

Due to the complexity of the flow in tidal energy
sites, even well calibrated numerical models exhibit
severe errors. Even if we assume model performance
to be comparable, a major advantage of the response
approach is the computational efficiency. The models
trained in this work took approximately 3 minutes
to train each with predictions being generated near
instantly thereafter. Models were run without modifica-
tion, and thus required little expertise to setup. In con-
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Fig. 3. Kernel density estimates of normalized power residuals
over 180 day test-set. Mean percentage errors for each model are
reported.

trast, numerical models require laborious and costly
development as well as access to high-performance
computing resources. In the case where no or limited
observational data is available, numerical modeling
becomes the de facto option. RTide can still be useful
in this context as its physical basis can be exploited to
learn and emulate the numerical model. In so doing,
accurate predictions can be generated at any point in
the future, without requiring extensive time-stepping.

In the present paper we have not considered me-
teorological forcing. However, we note that including
forcing from winds, pressure and potentially radiation
stresses from waves is a natural extension of a response
approach [27]. The same cannot be said for harmonic
analysis and whilst such forcing can, of course, be
included in flow models, this would require substantial
extra computation. A further ‘forcing’ that could be
considered is whether turbines are operational. Tidal
turbines must apply a substantial thrust to the flow in
order to generate power and how turbines are used
will alter the flow. In principle, this is something that
could be included in RTide although how well this
would work remains an open question. It would also
not be possible to validate this in the field until a large
tidal turbine farm is deployed.

VI. CONCLUSION

In this paper we have shown how the open source
RTide code can be applied to the real problem of
predicting tidal currents at a candidate site for tidal en-
ergy extraction. Without modifications to the standard
formulation, RTide outperforms alternative models and
has the potential to be a valuable tool as the tidal
stream industry develops.

APPENDIX

Figure 4 presents a comparison between the raw (i.e.
unfiltered) data and the predictions. The overall con-
clusions from the data are similar to those presented
in the body of the paper.
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