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ABSTRACT
Under a linear model of gravity wave evolution the ex-

pected shape of large events is given by Quasi-determinism the-
ory. However, nonlinear physics modifies the averaged shape
of the largest events. In this study, we examine these nonlin-
ear modifications to the averaged shape of the largest events for
directionally spread random wave fields. We first compare these
nonlinear changes from the extreme events in random wave fields
with the nonlinear changes during the evolution of deterministic
wave groups. We then explore whether it is possible to predict
these nonlinear changes observed in random wave fields with
only nonlinear wave group simulations. We applied a modified
version of the wave group detection algorithm in [1, 2] to iso-
late the individual wave groups from random wave fields. We
perform the nonlinear wave group simulations with the initial
conditions matching these isolated individual wave groups ex-
tracted from linear random wave field. The nonlinear evolution
of these isolated wave groups can predict the envelope contrac-
tion of averaged shape of extreme events in random wave fields
quantitatively over a wide range of local steepness under cur-
rent conditions. This suggests some statistical connections be-
tween the nonlinear evolution of deterministic wave groups and
the evolution of the largest waves in the random wave fields.

1 Introduction
The term “freak waves” or “rogue waves” usually refers to

extremely large but rarely occurring waves in the open ocean.
There is a lot of interest in the physics and engineering com-
munities about the most probable shape of these freak waves as
the shape is related to the wave dynamics and the wave-induced

forces in ocean engineering practice [3–5]. For real water waves
in the open ocean, the amplitude and the phase component of
these wind generated waves are randomly distributed, which
leads to each individual extreme having a different shape. In
linear theory, Quasi-determinism theory applies, suggesting the
expected shape of extreme waves is given by NewWave, which
says that the expected shape of an extreme event tends to the au-
tocorrelation function [6–8] (see also higher-order models in [9]).

When investigating extreme events, deterministic wave
groups have the advantage in saving computational cost and ex-
perimental time, as large events rarely happen in random time
series. More importantly, because the NewWave group shape is
also interconnected with the averaged shape of the largest events
in the random time series (according to linear theory), various
studies focus on the change in the shape during the nonlinear
evolution of groups which under linear evolution would have
formed a NewWave group. Numerical [10] and analytical [11]
work predicts that nonlinear physics would modify the shape of
these NewWave groups including the contraction of the wave
group in the mean wave direction, expansion in the lateral direc-
tion, and horizontal asymmetry with the largest wave moving to
front of the packet. Although these predictions are based purely
on the nonlinear evolution of deterministic NewWave groups,
similar nonlinear changes can also be observed for the largest
events in random time series on average with numerical simula-
tions and experiments (see further details in [12–16]). Some of
these changes have been observed in real water waves in the open
ocean [17, 18].

The nonlinear changes observed in the shape of large events
in both deterministic wave groups and random wave fields seems
to suggest that the evolution of water waves in both situa-
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tions are modified by similar nonlinear processes. Apart from
the Quasi-determinism theory, which connects the deterministic
wave groups and the random sea on a linear basis, a more so-
phisticated data-centric method has been proposed for isolating
wave groups from random time series [2, 19]. A modified ver-
sion from [1,20] has also been used for predicting the space-time
wave statistics. The accurate statistical prediction based on the
wave group detection method indicates that these carefully de-
signed wave groups can provide accurate perdition of the nonlin-
ear amplification in random time series.

In this study, we apply the modified wave group detection
method proposed in [1] for averaged shape predictions. Previ-
ously it has only been used for predicting crest statistics. We will
compare the performance when predicting the nonlinear changes
in random time series with the wave group detection method, as
well as the NewWave based method. Both of the methods use the
nonlinear simulations of deterministic wave groups for estimat-
ing the nonlinear changes in nonlinear random time series. In the
former method, the largest wave group profiles from linear ran-
dom time series are extracted and used in the initial conditions of
deterministic wave groups. We let these carefully designed wave
groups evolve nonlinearly and the averaged shape of these wave
groups at nonlinear focus is used to predict the changes in non-
linear random time series. For the latter method, the NewWave
groups are scaled to the top 100 largest events, which is then used
as the initial conditions in the nonlinear simulations. The accu-
racy of both prediction methods is evaluated with three different
sampling domain sizes.

We structure this paper as follows. We first provide a brief
introduction of the wave group detection algorithm used in this
study in Section 2. We then provide all the numerical details in
Section 3.1 and present results in Section 4.

2 Wave group detection from random wave fields
In this study, we aim at connecting the nonlinear changes

observed during the evolution of deterministic waves to make
computationally efficient predictions for random time series.
This connection process starts with isolating all the largest wave
groups within random linear simulations. Because of the inher-
ent randomness of the wave field, it is rather difficult to isolate
and extract wave groups directly. Instead, we followed the wave
group detection method proposed in [1] and use a superposition
of Gaussian elementary wave groups to match the spatial profile
of a linear wave field as:

G(x,y) =
N

∑
n=1

gn(x,y), (1)

where G(x,y) is the superpositioned wave field, and N is the
number of wave groups with a Gaussian profile gn(x,y) as:
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where An is the envelope height of nth wave group with the wave
group centre at (xc

n,y
c
n) and the Lx

n and Ly
n are the two length scale

parameters measuring the width of the group in the longitudinal
direction x and in the transverse direction y respectively.

We summarise the wave group detection method below
given full details are presented elsewhere [1]. We first identify
the wave group centres by finding the local maximum point of
the random wave field. We then run an optimisation algorithm
to determine the best-fits for the length scale parameters for all
the wave groups. This fictitious time scale marched optimisation
algorithm starts with the initial conditions defined to match the
second order derivatives at the envelope peak and will terminate
when the desired level of accuracy is achieved.

This wave group detection method effectively decomposes
the entire random wave fields into individual Gaussian wave
groups and we present a typical wave group detection results in
Figure 1. The wave group detection method proposed can cap-
ture most of the envelope shapes in a random wave field and we
will examine the accuracy of this wave group detection algorithm
later in the study.

3 Numerical Details
In this study, we investigate the averaged shape of the largest

events in a two-dimensional water wave system. We will also
examine the performance of the wave group detection method
and the NewWave theory based method in predicting the shape
changes of the largest events during the nonlinear evolution. A
total of four different sets of simulations are performed in this
study which are detailed in Table 1. All the nonlinear simula-
tions in this study are performed with the Modified Nonlinear
Schrodinger Equation (MNLS) [21] (see details in Section 3.1).

We have examined three cases of interest and these cases
cover an Eulerian point measurement, averaged shape from an
intermediate sized area, and the averaged shape from a large area.

TABLE 1. Types of simulations performed in this study. Tp is the
peak wave period.

Name Type of simulation Linearity No. of simulations Length

Linear Random Sea Random waves Linear 4000 Realisations 40 Tp

Nonlinear Random Sea Random waves Nonlinear 4000 Realisations 40 Tp

Decomposed Wave Groups Gaussian Wave Group Nonlinear 27000 Cases 30 Tp

NewWave Groups NewWave Group Nonlinear 100 Cases 30 Tp
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FIGURE 1. Wave envelope field for (a): a sample low-pass filtered
envelope field from random linear simulations and (b): superpositioned
wave envelope field G(x,y) reconstructed with decomposed elementary
Gaussian wave groups gn(x,y). Red dots represents the position of de-
tected wave group centre with peak detection algorithm. The wave field
is generated with a initial Gaussian spectrum with the spectral band-
width in x and y direction to be σx = σy = 0.1. The wave steepness of
this wave field is Hskp = 0.25.

The scale of the area relative to the wavelengths are presented in
Table 2.

3.1 MNLS equation
In this study, we calculate numerical solutions of the MNLS

from [21] (please see [22, 23] for a detailed comparison of the
performance of this numerical scheme).

The MNLS is a nonlinear model for the evolution of the
complex envelope, u:

TABLE 2. Summary of simulations in this study, where Hs is the sig-
nificant wave height, kp is the peak wavenumber, Tp is the peak period,
σx and σy are the spectral bandwidth in x and y direction and λp peak
wavelength.

Case Hskp Tp [s] σx σy Quantity of interest Sampling domain (S )

1 0.25 2 0.1 0.1 |u|/Hs Centre point

2 0.25 2 0.1 0.1 maxx,y∈S |u(x,y)|/Hs x ∈ [0,3λp],y ∈ [0,3λp]

3 0.25 2 0.1 0.1 maxx,y∈S |u(x,y)|/Hs x ∈ [0,10λp],y ∈ [0,10λp]
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where ω0 is the peak angular frequency, kp is the peak wave num-
ber, ∗ represents the complex conjugate, z is the vertical coordi-
nate, and the linear operator L(∂x,∂y) is given as:

L(∂x,∂y) = i
{[

(1− i∂x)
2 −∂

2
y

]1/4
−1

}
, (4)

and the return current potential φ is calculated with

∂φ

∂ z
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z=0

=
ω0

2
∂ |u|2

∂x
, (5)

and the potential followed Laplace’s equation within the fluid
domain, hence ∇2φ = 0, and φ tends to zero in the limit as z →
−∞. the surface of free waves can be obtained from the complex
envelope u using the following:

η = Real(uexp(i(k0x−ω0t))). (6)

We used a fixed time step of 0.04 seconds (50 steps per peak
period) for all the nonlinear simulations with MNLS.

3.2 Random wave field
In this study, we focus on the averaged shape of the largest

events from a random wave field. Hence, the linear and nonlin-
ear random wave fields are simulated as the baseline for examin-
ing the overall performance of wave group detection method and
the NewWave theory based method. Following [24], we setup
a numerical domain with periodic boundary conditions in both
directions, with the number of grid points in x and y direction
to be Nx = Ny = 128. We consider waves with a peak period
of Tp = 2 seconds, which corresponds to a peak wavelength of
λp = 2π meters for deep water waves. The numerical domain
has 10 wavelengths in x and 20 wavelengths in y, and the dis-
cretisation of the wave vector plane are ∆Kx = 1/(10λp) and
∆Ky = 1/(20λp). This gives a physical length in x Dx = 2π/∆Kx
and Dy = 2π/∆Ky in y direction with individual grid points: x j =
Dx j/Nx, j = 0,1, . . . ,Nx−1 and yl = Dyl/Ny, l = 0,1, . . . ,Ny−1.

We start our simulation with a initial Gaussian envelope
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spectrum as:

ψmn =
ε√

2πσxσy
exp

[
− (m∆Kx)

2

4σ2
x

−
(n∆Ky)

2

4σ2
y

]
, (7)

where the σx = σy = 0.1 is the spectral bandwidth in x and y di-
rection. ε is the wave steepness scaling factor, which controls the
significant wave height. In this study, we tune the ε to match the
target wave steepness of Hskp = 0.25 for both linear and nonlin-
ear random simulations, where Hs is the significant wave height
of the random wave field and kp is the peak wavenumber. The
Fourier components B̂mn can be obtained by adding a random
phase to the wave spectrum as:

B̂mn =
√

∆Kx∆Kyψmn expiθmn, (8)

where i is the imaginary unit, and θmn is the random phase, which
uniformly distributes within the interval [0,2π].

It is slightly more complicated to calculate the averaged
shape of the largest events especially when areal measurements
are considered. In this study, we focus on the wave group, which
causes the largest surface elevation within the sampling domain
(S ) over the entire duration of the simulation. The detected
wave group is centred in space and collected for all the linear
and nonlinear random simulations. In this study, a total of 4,000
largest envelope profiles are collected and averaged to obtain the
final results.

3.3 Decomposed wave group simulations
In this study, we explore whether we can make accurate

predictions on the average shape of the largest events based on
the wave group detection method introduced in Section 2. To
achieve this, we follow a similar approach in the previous stud-
ies [10, 25–27] and use the evolution of focused wave groups as
a convenient proxy for including the nonlinear effects during the
wave evolution. To focus on the largest events, we only consid-
ered all the wave groups with a nonlinear amplification (Amax/A)
greater than 1.05, where Amax is the maximum amplitude of a
wave group under nonlinear evolution. We obtain the nonlinear
evolution of these wave groups with the numerical simulation
of a wave group, which will form a perfect linear focused wave
group after 15 peak wave periods. Since the nonlinear physics
also modifies the focus time, additional 15 peak wave periods
(30 in total) are simulated to capture the entire nonlinear focus-
ing and de-focusing processes.

We obtain the parameters of extreme wave groups from ran-
dom linear wave fields with the wave group detection method
proposed in Section 2. These collected extreme wave group pa-
rameters are then used to define the envelope profile of deter-

ministic wave groups at linear focus. Because it is too computa-
tionally intensive to simulate all detected extreme wave profiles,
we binned these parameters with 30 uniformly distributed bins
in both Lx and Ly, and also 31 uniformly distributed bins for A.
These bins cover a wide parameter space as:

Lxkp ∈ [1,14], Lykp ∈ [4,40] and Akp ∈ [0.07,0.38]. (9)

A total of 27900 cases of wave groups are simulated to cover all
the combinations of wave group parameters within the parame-
ter space. During the averaging process, a weighted function is
introduced to prioritise the most common combination of wave
group parameters found during the wave group detection process,
and the weight function can be simply approximated as the joint
distribution of three wave group parameters (A, Lx and Ly,).

For the wave group simulations with wave group detection
method we use a computational domain with 256 points in x di-
rection and 128 points in y direction. Periodic boundary condi-
tions are employed in both horizontal directions. Due to the wide
range of wave group sizes considered in this study, the physical
domain size is adjusted from 4 wavelengths to 40 wavelengths in
x direction and from 4 wavelengths to 20 wavelengths in y direc-
tion. A fixed time steps of 0.04 seconds are used (50 steps per
period) for wave group simulations.

3.4 NewWave group simulations
Under a linear model of wave evolution, the theory of

Quasi-determinism predicts the averaged shape of extreme waves
[6,8,28]. The most probable shape of an extreme crest can be cal-
culated with the scaled auto-correlation function [7]. In the spa-
tial domain, the expected shape of wave group with an extreme
crest η̄ = ηmax can be obtained as:

η̄ (x,y, t) =ηmax/m0

∫
∞

0

∫ 2π

0
S(ω,θ)

× cos(k0xsinθ + k0ycosθ −ωT )

×dθdω,

(10)

where S(ω,θ) is the directional power spectral density function,
k0 is the peak wave number, and m0 is the zeroth moment of the
wave spectrum.

In this study, we scaled the NewWave groups to the top
100 largest wave groups isolated using the wave group detec-
tion method. We follow the procedure for decomposed wave
group simulations and run the nonlinear simulation from −15Tp
to 15Tp after the linear focus. The wave envelope profile at linear
focus is now matched for the scaled NewWave profile presented
in Equation 10.
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For NewWave group simulations, we use a computational
domain with 512 points in x direction and 256 points in y direc-
tion with periodic boundary conditions employed in both hori-
zontal directions. The physical domain size is fixed at 20 wave-
lengths in both x and y directions. A fixed time steps of 0.04
seconds are used (50 steps per period) for wave group simula-
tions.

4 Results
In this study, we investigate the nonlinear changes to the av-

erage shape of the largest events in random wave fields with de-
terministic wave groups. We examine two methods for this pre-
diction. The first prediction method involves isolating individual
wave groups from the linear random field using the wave group
detection algorithm. A set of carefully designed wave groups
are simulated with nonlinear evolution to predict the nonlinear
changes in the random time series on average (see Section 3.3
for details). The second method uses the NewWave group shape
based initial conditions for nonlinear simulations of determinis-
tic wave groups. The NewWave group shape is scaled to the top
100 largest waves found in the linear random field. The nonlinear
evolution of these scaled NewWave groups are averaged to pre-
dict the nonlinear changes in the random time series (see Section
3.4 for details). The performance of these methods is then com-
pared to the averaged shape of the largest events in the nonlinear
random wave simulations in Section 4.4.

4.1 Averaged shape of largest events from random
wave fields

We first present the target averaged shape of the largest
events in the random wave simulations for Case 2 and Case 3
in Figure 2. In Figure 2 (a,b), we show the normalised aver-
aged envelope profile from linear random wave field. The over-
all shape of these averaged envelopes is consistent with the pre-
dictions from Quasi-determinism theory. The average profile is
close to being perfectly symmetric in both directions, and the
shape seems to be well captured by a Gaussian wave group shape
(see detailed comparisons in Section 4.4). Additionally, the wave
groups are elongated in the lateral direction when the sampling
domain becomes larger. This agrees well with previous stud-
ies [1], as they observe the length scale in y direction almost
doubled when a larger area is sampled. We note that this ‘lin-
ear’ expansion in the lateral direction is very different from the
nonlinear expansion of the wave group mentioned in [11,12,29],
where the latter depends on the nonlinearity instead of the sam-
pling area.

In Figure 2 (c,d), we present the averaged shape of largest
events in the nonlinear random wave simulations with the same
sea states as the linear simulations. When compared to linear
simulations, nonlinear physics affects the shape of these largest

events. The wave group tends to be more compact in the mean
wave direction and the peak of the wave group tends to move to
the front of the wave group. These findings agrees well with the
previous studies with both numerical simulations [12], unidirec-
tional wave experiments [13], and field observations [18].

We note that in this study, we extract the averaged shape of
these largest wave groups with the surface elevation series in-
stead of the envelope using Equation 6. We stack these surface
elevation profiles by centring the largest crests and then calculate
back to the envelope profile using the Hilbert transformation af-
ter the averaging process. There would be minor differences if
the average process is performed directly on the envelope, but the
averaged envelope tends to a non-zero value far from the centre.
As we are primarily interested in the change close to the peak,
the general conclusion should hold either way. It is still better to
average on the surface elevation profiles as the averaged surface
elevation profiles tend to zero far away from the peak and gives
the cleaner results shown in Figure 2.

4.2 Evolution of decomposed Gaussian wave groups
In this section, we approximate the linear random wave

fields with Gaussian wave profiles and perform nonlinear sim-
ulations of these isolated deterministic wave groups. We investi-
gate whether similar nonlinear changes observed during random
wave simulations can also be predicted with these deterministic
wave groups.

We present the averaged shape of the detected Gaussian
wave group profile in Figure 3 (a,b) for both Case 2 and Case 3.
The averaged profile at focus during the nonlinear simulation of
these detected wave groups is shown in Figure 3 (c,d). Overall,
we observe very similar nonlinear changes on the envelope pro-
file to those found in nonlinear random wave simulations. The
wave group becomes more compact in the mean wave direction,
and the envelope peak moves to the front of the wave group. De-
tailed comparison of the linear and nonlinear averaged profile
will be shown in Section 4.4.

4.3 Evolution of NewWave groups
Instead of using the data driven wave group detection al-

gorithm, the averaged profile of the largest waves from linear
random time series from an Eulerian point measurement can di-
rectly be obtained with Quasi-determinism theory (also referred
to as the NewWave group). Hence, it is also possible to predict
the nonlinear changes in the random wave fields with nonlin-
ear NewWave group simulations. Unfortunately, to the author’s
knowledge, the current Quasi-determinism theory seems only to
focus on point measurements. This certainly affects the perfor-
mance of NewWave based method for the largest wave profiles
measured over an area (i.e. Case 2 and 3). Hence, in this study,
we also investigate the averaged shape of the largest events mea-
sured from the centre point of the numerical domain.
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FIGURE 2. Averaged shape of Top 3 largest events from (a,b) linear simulation of random wave fields, (c,d) nonlinear random simulations. Figure
(a,c) present results for the Case 2 in Table 2 and (b,d) present results for the Case 3 Table 2. Envelope profile are normalised and centred by the
maximum value at the envelope peak.

We present the NewWave profile calculated from Equation
10 in Figure 4 (a). The averaged profile of nonlinear NewWave
group simulations are shown in Figure 4 (a). Figure 4 (b) and (c)
represent the average of profile at nonlinear focus for point mea-
surements and areal measurements respectively. We can still ob-
serve all the nonlinear changes from the random time series with
NewWave group simulations. However, when this NewWave
based method is applied to the areal measurements (i.e. in the
Figure 4 (c)), the nonlinear changes are quite dramatic. This
could be because of the limitation of Quasi-determinism theory
itself and we will present a quantitative comparison in Section
4.4.

4.4 Performance comparison
We first examine the performance of the wave group detec-

tion algorithm as well as the Quasi-determinism theory under a
purely linear model. Hence, we present the averaged profile of
the largest groups from linear random simulation as the ‘ground
truth’. Because the Quasi-determinism theory can only be ap-
plied to point measurements, only results in Case 1 are consid-
ered here. The predicted envelope profile in the mean wave di-
rection from both methods are presented in Figure 5.

As we are primarily interested in the shape of the envelope,
not the maximum envelope value, we scaled both envelope pro-
files to the averaged envelope peak from random wave fields.
This is also because the Quasi-determinism theory already scales
the NewWave group profile to the maximum surface elevation
during the calculation (see Equation 10), it is almost guaranteed
to match the peak value between NewWave group profiles and
the averaged shape from linear random time series.

From Figure 5, both of the methods capture the averaged
shape of the largest events on a linear basis quite well. Some
discrepancy can be observed far away from the envelope peak,
which is presumably because only a finite number of largest
events from random wave fields are considered. This leads to
the envelope amplitude being far away from the envelope hav-
ing a non-zero value. However, for the envelope close to the
peak, which is also the profile we are primarily interested in, the
NewWave group profile can provide accurate predictions. It also
confirms that, on average, the wave group detection algorithm
in Section 2 can accurately approximate the largest events from
random wave fields with Gaussian shaped envelopes.

We now consider the performance of both methods when
predicting the averaged shape of the largest events over an area.
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FIGURE 3. Averaged shape of decomposed Gaussian wave groups based on the wave group detection method presented in Section 2 for (a,b)
averaged decomposed linear wave group profile, (c,d) averaged wave group profile at nonlinear focus. Figure (a,c) present results for the Case 2 in
Table 2 and (b,d) present results for the Case 3 Table 2. Envelope profile are normalised and centred by the maximum value at the envelope peak.

In Figure 6 (a), we focus on the linear simulation results and
regard the averaged profile from linear random wave fields as
the target case for comparison. Overall, the NewWave profile
matches the linear averaged shape well and only under predicts
the width of the envelope slightly far away from the envelope
peak. As it is essentially the same NewWave profile but just with
different scaling coefficients for the point measurement in Fig-
ure 5. It seems that there are only small increases in the envelope
width when the sampling domain enlarges. This agrees well with
the previous study [1], where the length scale in x only changes
a little if a larger area is sampled. The wave group detection
method overestimates the envelope peak value slightly but can
still predict the overall shape accurately. This overestimation is
primarily because the wave group detection method essentially
averages across a different set of wave groups. As opposed to the
largest wave group in each random simulation, the wave group
detection method collects all the wave groups within the sam-
pling domain and with a nonlinear amplification factor of 1.05.
It is certainly a better categorization for ‘nonlinear’ waves but it
is only achievable with the wave group detection method.

In Figure 6 b, we now consider the prediction for the nonlin-

ear changes of the averaged shape of largest events from nonlin-
ear random wave fields. In general, both the NewWave group
based method and the wave group detect method show simi-
lar nonlinear changes as those observed from the random wave
field. However, it seems that directly scaling the NewWave group
shape to the top 100 largest crests would result in significant
over-prediction in the nonlinear amplification as well as these
nonlinear changes. We note that this is a rather simplified pre-
diction process for the NewWave group as there is no suitable
formula for areal measurements and the final results also depend
on the number of averaged profiles (i.e. top 100 versus top 1000).
For the wave group detection method, however, because all the
nonlinear simulations are based on isolated wave groups in lin-
ear random wave fields, the method can easily accommodate the
changes in the sampling domain. This results in accurate predic-
tions in the nonlinear amplification at the envelope peak as well
as the nonlinear shape changes.

Finally, we further investigate the applicable range of such
predictions with the wave group detection method. To achieve
this, we categorised the collected nonlinear wave group profile
based on the local wave steepness around the peak (Anonlinearkp,
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FIGURE 4. Averaged shape of NewWave groups (a): NewWave profile calculated based on the underlying wave spectrum with Quasi-determinism
theory, (b,c): wave groups profile at nonlinear focus with initial conditions based on NewWave profile for top 100 largest events captured during the
random simulations. Figure (b) presents results for the Case 1 in Table 2 and (c) presents results for the Case 3 Table 2. Envelope profile are normalised
and centred by the maximum value at the envelope peak.

FIGURE 5. Average shape comparison in the mean wave direction
for Case 1 in Table 2. The blue line shows the averaged shape of Top
3 largest events from linear simulation of random wave fields. The red
line shows the NewWave profile, and the yellow line shows the Gaus-
sian Wave group profile shown in Equation 2 with Lx value set to the
averaged value of all decomposed large wave groups. Red and yellow
lines are scaled to a peak value of the blue line for comparison purposes.

where Anonlinear is the maximum envelope amplitude during the
nonlinear evolution). The contraction of the envelope in the
mean wave direction can also be quantified as the change in
the envelope width at 80% of maximum envelope height (see

FIGURE 6. Average shape comparison in the mean wave direction
for Case 3 in Table 2, (a): linear envelope profiles from random simula-
tions in Figure 2 b (blue line), averaged decomposed linear wave group
profile in Figure 3 b (red line), and NewWave profile Figure 4 a (yel-
low line), (b): nonlinear wave group profiles from random simulations
in Figure 2 d (blue line), averaged decomposed wave group profile in
Figure 3 d (red line), and wave groups profile at nonlinear focus with
initial conditions based on NewWave profile for top 100 largest events
captured during the random simulations in Figure 4 c (yellow line).

also [18]). In Figure 7, we present the comparison between the
predictions based on the wave group detection method and the
actual measured envelope profile in the nonlinear random wave
fields. The envelope width decreases significantly as the local
wave steepness increases, which agrees well with previous stud-
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FIGURE 7. Envelope width in the mean wave direction at 80% of
maximum envelope height for wave groups with different local steep-
nesses at nonlinear focus. Envelope width is nondimensionalised with
the peak wavelength.

ies [12, 18, 30]. Additionally, the wave group detection method
can make quite accurate predictions over a wide range of local
wave steepness, which suggests such a method can be applied to
a reasonable range of sea states and still maintain its accuracy in
predictions.

5 Discussions and conclusions
In this study, we explore the nonlinear changes in the aver-

aged shape of the largest events from random simulations of di-
rectionally spread seas. Additionally, we also explore whether it
is possible to make predictions of these nonlinear changes in the
random wave fields with deterministic wave groups. The initial
conditions of these deterministic wave groups can either be ob-
tained from the wave group detection algorithm proposed in pre-
vious studies [1,2], or can be calculated from Quasi-determinism
theory based on the underlying spectrum. We consider three
cases with sampling domain sizes varying from an Eulerian point
measurement to space-time measurement over an area. We find
that nonlinear physics modifies the averaged shape of the largest
events in random simulations so that the wave group tends to con-
tract in the mean wave direction and the envelope peak tends to
move to the front of the wave group. These nonlinear changes are
well qualitatively predicted by the nonlinear evolution of deter-
ministic wave groups with both wave group detection algorithm
and the Quasi-determinism theory. This also agrees well with
previous findings [11, 12, 18]. This suggests a strong connection
between the deterministic wave groups and those largest events
that occur in the random wave field. These carefully designed

wave groups are likely capturing essentially very similar nonlin-
ear physics, which affects the evolution of these rogue waves in
the random wave fields.

Since it is likely that similar nonlinear physics is driving
the nonlinear evolution for both the largest waves in the random
wave field and the carefully designed wave groups, we further
explore whether it is possible to make quantitative predictions on
these nonlinear changes in the random wave fields with only de-
terministic wave groups. We present the predictions for the most
nonlinear case with waves sampled over an area (i.e. Case 3).
The quantitative comparison shows that the wave group with ini-
tial conditions determined by the wave group detection algorithm
can make accurate predictions on both the nonlinear amplifica-
tion as well as the nonlinear changes of the shape.

We note that care must be taken when using such data driven
methods. Firstly, this data centric method has only been applied
to numerical simulations based on MNLS. Data pre-processing
may be required to remove noise before applying it to field ob-
servations or experimental data. Additionally, due to the limi-
tation on the computational resources, we only present one sea
state in this study. However, based on the fact that the envelope
contraction can be well captured with the wave group detection
algorithm for a wide range of local steepness. We are confident
that this method can make accurate predictions for a wide range
of sea states.

Finally, we discuss the takeaway message from this study.
In this study, we show that there are some connections between
the averaged shape of the largest events from random wave fields
and the carefully designed wave groups. These connections are
likely due to both processes sharing similar underlying nonlin-
ear physics and these two processes can be statistically linked
via appropriate data driven methods. The wave group detection
method proposed in [1] shows its edge in predicting these nonlin-
ear changes in random wave fields with only wave groups. The
advantage of using deterministic wave groups predicting non-
linear behaviour in random wave fields does not only limited
to the computational savings and reduction in the experimental
cost. The proposed data driven method also allows more lo-
calised nonlinear physics to be included for better predictions.
For example, wave breaking in random wave fields can happen
randomly in time and space, which is almost impractical to trace
and explore in detail. However, wave groups with predefined
phases and amplitudes are much easier to investigate. Hence, we
do believe such a method connecting the individual wave groups
with random wave fields does have a huge potential in ocean en-
gineering practice.
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