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Abstract

This paper explores market selection in general equilibrium when the state of
the economy is endogenous. Analysis of consumer survival in this case requires
solution of the model’s dynamics, for which evolutionary game theory can be use-
ful; for instance, if the state and beliefs are Markovian and utility logarithmic,
then the dynamics of consumption shares are described by the replicator dynam-
ics. This is illustrated in a simple exchange economy, and in a standard monetary
economy with multiple long-run equilibria where a plausible form of inflation tar-
geting serves to destabilize a liquidity trap in favor of the target equilibrium.
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1 Introduction

Sandroni (2000) and Blume and Easley (2006) offer a foundation for the “market selec-

tion hypothesis” (Alchian 1950; Friedman 1953; Cootner 1964; Fama 1965) that market

forces will lead rational traders to flourish at the expense of irrational ones. They show

that, if agents are equally patient and at least one has rational expectations, then a

complete markets economy satisfying certain conditions will eventually be dominated

by correct beliefs.1 However, they take the true path of the economy as given, whereas

many plausible models exhibit endogeneity in the economy’s state. Allowing this fea-

ture complicates the standard analysis of consumer survival by requiring solution of the

economy’s dynamics. I show here that evolutionary game theory can be helpful in this

respect; in particular, if utility is logarithmic and the economy’s state and beliefs are

Markovian in the beliefs’ consumption shares, then market selection of those shares is

described by the “replicator dynamics” (Taylor and Jonker 1978), with beliefs flourish-

ing if and only if they outperform the economy’s average belief in their ability to predict

the evolving state. Whilst a Markovian state fits within the standard framework for

market selection, assuming that beliefs are Markovian renders them endogenous, re-

quiring them to be found in equilibrium; the notion of competitive equilibrium hence

requires modification under this assumption, as in Dindo and Massari (2017).2

I stress that this is a fully rational model, with the replicator dynamics playing a

descriptive rather than a behavioral role; there is no bounded rationality here other

than the market selection literature’s relaxation of rational expectations in favor of

heterogeneous beliefs. Whilst this evolutionary game theoretic representation has thus

been implicit in the market selection approach since the seminal contribution of Blume

and Easley (1992), here I make it explicit. Blume and Easley (1992, p. 10) note that:

“One might be tempted to apply the biological population processes that

have found favor in evolutionary game theory [to market selection]. The

implicit hypothesis would be that the population dynamic is the reduced

form of a learning process or an adaptive process of strategy revision in a

large population of players.”

1There are important limits to this market selection; even in complete markets, when discount fac-
tors differ patience can compensate for the effect of bad forecasts by inducing higher savings. Kogan
et al. (2006, 2017) provide conditions under which irrational traders survive in complete markets, and
show that even if they vanish, they can still have an impact on asset prices. Massari (2017), meanwhile,
provides a necessary and sufficient condition for a trader to vanish; see also Blume and Easley (2009).
Agents with differing beliefs can survive in incomplete markets (Beker and Chattopadhyay 2010; Cog-
ley, Sargent, and Tsyrennikov 2014; Cao 2018), as well as under learning (Beker and Espino 2011;
Dindo and Massari 2017), endogenous investment rules (Bottazzi and Dindo 2014; Bottazzi, Dindo,
and Giachini 2018), ambiguity aversion (Guerdjikova and Sciubba 2015), and recursive preferences
(Borovicka 2020; Dindo 2019).

2Some market selection papers have placed particular conditions on beliefs (Jouini and Napp 2011;
Branger, Schlag, and Wu 2015) and preferences (Muraviev 2013).
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However, here I show that the replicator dynamics in fact arises naturally as a rep-

resentation of belief dynamics under market selection, without the need for the usual

evolutionary game theoretic assumptions on learning or adaptive behavior within a

larger population.

Since we can straightforwardly find the solution trajectories of the replicator dy-

namics, we can use them to analyze the effects of market selection with an endogenous

state, as I illustrate with a simple exchange economy in Subsection 4.1.3 In macroe-

conomic general equilibrium models, it is common for the state of the economy to be

endogenous, owing for instance to the role of agents’ expectations in shaping macroeco-

nomic variables. This can often lead to multiple equilibria, in which case it is not clear

what “correct beliefs” the market might select for; in this case, the replicator dynamics

can also offer a method of equilibrium selection. I illustrate this in Subsection 4.2 by

first establishing equilibrium convergence under market selection in a standard Taylor

rule model with iid beliefs and a plausible form of inflation targeting. I then add a zero

lower bound and consequent liquidity trap to the economy, and show that the market

selects the target equilibrium over the liquidity trap. I begin, however, in the next two

sections by outlining the model and its evolutionary game theoretic representation.

2 Market Selection

Blume and Easley (2006) analyze an infinite horizon general equilibrium model in which

consumers allocate their wealth across states of the world each period. Whereas a

standard rational expectations model would equip a representative agent with correct

beliefs about the evolving state of the world, they allow heterogeneity in beliefs, which

then flourish or diminish according to the consumption success that they bring.

There is a finite space S of states of the world, with sequences of states in discrete

time denoted σ = (σ0, . . .) ∈ Σ and called paths of the economy. A state of the world

here is in the Arrow–Debreu decision theoretic sense of a resolution of ex ante un-

certainty, rather than the evolutionary game theoretic sense of “state” as a sufficient

statistic for the evolution of the process. The “true” probability measure on the measur-

able space Σ (together with its product sigma-field) is denoted p. Let σt = (σ0, . . . , σt)

denote the partial history through date t of the path σ, Σt the set of such t-length

partial histories, and Ft the product sigma-field of events measurable at date t. For

any probability measure q on Σ, qt(σ) = q({σ0×· · ·×σt}×S×S×· · · ) is the (marginal)

probability of the partial history σt, and qt(σ|σt−1) = q({σ0×· · ·×σt}×S×S×· · · |σt−1)

is the (conditional) probability of the state σt following σt−1.

3There is a developed suite of software for diagrammatic analysis of such evolutionary dynamics,
called Dynamo, available at https://www.ssc.wisc.edu/∼whs/dynamo/.
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An economy contains I consumers, each with consumption set R+.4 A consumption

plan ci : Σ→
∏∞

t=0 R+ is a sequence of Ft-measurable R+-valued functions {cit(σ)}∞t=0.

Consumer i’s endowment stream is a particular known consumption plan denoted ωi,

his beliefs the probability measure pi on Σ, and his utility function

Ui(c) = Epi

{
∞∑
t=0

βtiu
i(cit(σ))

}
,

where βi ∈ (0, 1) is a discount factor and ui : R+ → [−∞,∞) is a payoff function on

consumptions.5 I will say that consumer i has rational expectations if pi = p. Like

Blume and Easley, I exploit the fact that, if c∗ = (c1∗, . . . , cI∗) is a Pareto-optimal

allocation of resources, then there is a vector of welfare weights (λ1, . . . , λI) � 0 such

that c∗ solves the problem

max
(c1,...,cI)

∑
i

λiU
i(c),

s.t.
∑
i

ci − ω ≤ 0

∀t, σ, i cit(σ) ≥ 0, (1)

where ωt =
∑

i ω
i
t.

6

The following assumptions are basic to the model:

Axiom 1 There are logarithmic payoffs ui(ci) = ln ci, ∀i.

Axiom 2 We have ∞ > F = supt,σ
∑

i ω
i
t(σ) ≥ inft,σ

∑
i ω

i
t(σ) = F > 0.

Axiom 3 For all consumers i, all dates t, and all paths σ, if pt(σ) > 0 then pit(σ) > 0.

Axioms 2 and 3 are two of Blume and Easley’s axioms, whilst Axiom 1 is a special case

of their more general setting, but one that is focal in asset pricing (Rubinstein 1976).

For failures of market selection absent Blume and Easley’s conditions, see Kogan et

al. (2006).

(1) is a standard Negishi (1960) problem, the solution to which characterizes the

consumption dynamics of a complete markets exchange economy in competitive equi-

4The model could be extended to allow for infinitely many consumers, but would then require the
use of the infinite-dimensional replicator dynamics (Oechssler and Riedel 2001, 2002). A finite number
of consumers is hence assumed for simplicity.

5Note that this utility function relies implicitly on the consumer’s satisfaction of, e.g., the Savage
(1954) axioms.

6Note that the first constraint here implies free disposal and non-storable endowments.
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librium by the First Welfare Theorem.7 Existence of competitive equilibrium is guar-

anteed under Axioms 1–3 by Peleg and Yaari (1970), and many standard models fit

within this framework. For instance, in Sandroni’s (2000) analysis of the Lucas (1978)

“tree” model, the state of the world determines the value of the dividend produced by

the trees, whilst a consumer’s endowment stream is determined by his share of claims

to those (non-storable) dividends.

3 Endogenous State

In the Blume and Easley (2006) model above, the true path of the economy was ex-

ogenously governed by the probability measure p. In this section, I allow the evolving

state to be determined endogenously, thus complicating market selection analysis by

requiring the solution of the resulting dynamics. Evolutionary game theory provides

a useful tool in this context: If utility is logarithmic, and the state and beliefs are

Markov in the economy’s consumption shares, then the evolution of those consumption

shares is described by Taylor and Jonker’s (1978) replicator dynamics. In general, this

captures the dynamics of a population whose strategies flourish if and only if they out-

perform the average payoff; here, it is beliefs that flourish if and only if they place a

higher-than-average probability on the economy’s realized state.

The first-order conditions for the solution to (1) are, for all σ and t, as follows:

1. there is a number θt(σ) > 0 such that if pit(σ) > 0, then

λiβ
t
iu
i′(cit(σ))pit(σ)− θt(σ) = 0;

2. if pit(σ) = 0, then cit(σ) = 0.

I assume equal discount factors βi = βj = β, under which these conditions imply that,

if i and j have not vanished, then

cjt(σ)

cit(σ)
=
λjp

j
t(σ)

λipit(σ)
.

Such an equation holds for each unordered pair of consumers, giving I!/2(I − 2)! equa-

tions, of which I − 1 are independent, the solution to which has

xit(σ) = λi

(
pit(σ)

pt(σ)

)
, (2)

7See, for instance, Kehoe and Levine (1985, p. 437), Kehoe (1989, p. 368) or Kehoe, Levine, and
Romer (1992, §2). Negishi aggregation of course only captures equilibrium behavior, and is likely
inadequate for welfare analysis (see, e.g., Mas-Colell, Whinston, and Green 1995, §4.D), but it is quite
sufficient for this paper’s equilibrium characterization purposes.
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where xit(σ) ≡ cit(σ)/
∑I

j=1 c
j
t(σ) and pt(σ) ≡

∑
i λip

i
t(σ) is the belief of the represen-

tative consumer under logarithmic utility (Rubinstein 1974, 1976; Jouini and Napp

2007). The population profile xt(σ) ≡ (x1
t (σ), . . . , xIt (σ)) of consumption shares of the

consumers in period t belongs to the (I − 1)-dimensional simplex X.8

Then

xit(σ) = λi
pit(σ|σt−1)pit−1(σ)

pt(σ|σt−1)pt−1(σ)

=
pit(σ|σt−1)

pt(σ|σt−1)
xit−1(σ). (3)

Intuitively, if a consumer’s conditional belief on next period’s state of the world gives

higher probability to the realized state than does the weighted-average belief p, then

his consumption share grows.

Equation (3) already looks quite similar to the replicator dynamics (Taylor and

Jonker 1978), but the weighted average here is timeless rather than evolving, and the

beliefs condition on the entire partial history up to period t − 1. However, the former

issue is moot, as we can see by letting p̂t(σ|σt−1) ≡
∑

i x
i
t−1(σ)pit(σ|σt−1) be the evolving

consumption-weighted-average conditional belief on the period-t state of the world:

Lemma 1 For all t and σ, pt(σ|σt−1) = p̂t(σ|σt−1).

The proof is immediate:

pt(σ|σt−1) ≡ pt(σ)

pt−1(σ)

=

∑
i λip

i
t(σ|σt−1)pit−1(σ)

pt−1(σ)

=
∑
i

xit−1(σ)pit(σ|σt−1) ≡ p̂t(σ|σt−1).

Note that pt(σ|σt−1) need not equal
∑

i λip
i
t(σ|σt−1); instead, we can see from the

second line above that it is a weighted average of the pit(σ|σt−1)’s, but with weights of

λip
i
t−1(σ)/pt−1(σ). That these weights are equal to the consumption shares xt−1(σ) is

remarkable and not at all obvious a priori. With a numerical state space S, and letting

Et−1σt ≡ Ep(σt|σt−1) and Êt−1σt ≡ Ep̂(σt|σt−1) be the expected period-t state under

pt(σ|σt−1) and p̂t(σ|σt−1), respectively, it follows that Êt−1 = Et−1.

I will say that there is a Markovian state if, for all t > 0 and σ, and conditional on

the set of possible beliefs P , the state of the world σt ∈ S is determined by a (possibly

unknown) time-homogeneous function T : (xt−1(σ), σt−1) 7→ ∆(S), where ∆(S) is the

8This population profile corresponds to the usual evolutionary game theoretic notion of the “state”
of the process qua a sufficient statistic for its evolution; in this paper, the “state” terminology is
reserved for the realizations of uncertainty in the model.
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set of probability measures on S. For instance, the state of the world σt might be

a function of the representative consumer’s expected next-period state Etσt+1.9 The

path of the economy is thus endogenous under a Markovian state, which is novel in the

market selection literature but poses no problems for the application of existing results,

as discussed in Appendix A.

I will say that there are (time-homogeneous) Markovian beliefs ρ1, . . . , ρI if, for each

pi ∈ P ≡ {p1, . . . , pI}, all t > 0 and all σ, pit(σ|σt−1) = ρi(σt|xt−1(σ), σt−1) > 0. In

words, consumer beliefs on next period’s state of the world must depend only on the

current consumption shares and state of the world, and each possible state must be

believed to have positive probability. This assumption requires a redefinition of com-

petitive equilibrium to allow for the resulting endogeneity of beliefs, as in Dindo and

Massari (2017). Moreover, Markovian beliefs render the welfare weights of (1) endoge-

nous in the manner of Kehoe, Levine, and Romer (1992), raising issues of equilibrium

multiplicity, which are also discussed in Appendix A. The full support of each ρi on S is

to guarantee the satisfaction of Axiom 3, and hence existence, but is of course stronger

than necessary.

Proposition 1 Suppose that Axioms 1–3 hold, that there is a Markovian state and

beliefs, and that T and ρ1, . . . , ρI are functions of the consumption shares xt−1(σ) alone.

Then the population profile xt(σ) evolves according to the replicator dynamics.

This is again immediate; if s(xt−1(σ)) ∈ S is the state realized in period t, (3) becomes

xit(σ) =
ρi(s(xt−1(σ))|xt−1(σ))

ρ̂(s(xt−1(σ))|xt−1(σ))
xit−1(σ). (4)

This equation defines the discrete-time replicator dynamics for a hypothetical belief

game G, with:

• player set consisting of the economy’s I consumers;

• common action set P , from which each player i “chooses” ρi; and

• payoffs of ρi(s(x)|x), the probability that ρi places on the realized state.

To be clear, this game is not actually played, but is merely a useful device for charac-

terizing the dynamics of (4). As in the standard replicator dynamics, player i’s problem

is like facing a single opponent with mixed strategy x, but unlike the usual random-

matching setting, player i’s expected payoffs need not be linear in x; we have a “playing

9The mapping T may or may not be founded on optimizing behaviour; for instance, government
policy may affect the state of the world, and is often assumed to be an exogenous influence on macroe-
conomic models.

7



the field” game (Maynard Smith 1982) where an action’s expected payoffs depend on

some property of the whole population, here the state s(·). Since T need not be de-

terministic, s(·) may be a random variable and the resulting replicator dynamics could

hence be stochastic (Foster and Young 1990; Fudenberg and Harris 1992; Cabrales 2000;

Imhof 2005); in that case, let (x̃t)t=0,1,... = (Ep xt(σ))t=0,1,... denote the expected motion

of consumption shares.

Remark 1 In the literature on “optimal beliefs” (Brunnermeier and Parker 2005;

Brunnermeier, Gollier, and Parker 2007), agents choose their beliefs to their best

advantage, but in the absence of effects arising from the interaction of beliefs, and

where payoffs are exogenous utilities. Strategic interaction in belief choice is explored

by Jouini, Napp, and Viossat (2013), who analyze the consequences of the replicator

dynamics operating on beliefs in a general equilibrium setting, again with exogenous util-

ities. They assume that beliefs flourish if they outperform average beliefs in the sense of

giving higher expected utility in the resulting Walrasian equilibrium. This is reasonable

if beliefs are determined by evolution and utilities coincide with biological fitnesses, or

if agents imitate others’ beliefs (Björnerstedt and Weibull 1996; Schlag 1998) or choose

myopically optimal beliefs (Hofbauer, Sorin, and Viossat 2009). Here, by contrast, I

consider the case where beliefs are determined neither by evolution nor by choice, but

instead are selected by the market. I have derived rather than assumed the replicator

dynamics as a description of the market selection of beliefs, and the relevant game on

which it acts is not one of utilities or biological fitnesses, but the probabilities that the

beliefs assign to the realized path of the economy.

What is the importance of the assumptions here? The Markovian structure gives a

Markovian evolutionary dynamic and time-homogeneous payoffs, whilst the assumed

logarithmic utility and dependence of T and beliefs only on xt−1(σ) give the pre-

cise form of the replicator dynamics.10 Heterogeneous logarithmic payoff functions,

{ui(ci) = ai ln c
i}i, would give a rescaled replicator dynamics, and it is possible to show

conditions under which other well-known evolutionary dynamics—including the best-

response dynamic, fictitious play and reinforcement learning—describe market selection

in a similar fashion.

10Whilst the “population” of beliefs is finite, the space of consumption shares is uncountable, as
under the replicator dynamics.
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4 Examples

4.1 A simple exchange economy

Suppose that we have two states {0, 1} and two consumers, each endowed with a unit

of consumption in each state and each period. The first consumer believes that state 0

occurs with probability 0.6 each period, whilst the second consumer believes that state

1 occurs with probability 0.6 each period, in each case independently of the previous

state and consumption shares. Suppose further that, unbeknownst to the consumers,

T (xt−1(σ)) gives state 0 with probability 0.6 if Et−1(σt) ≤ 1/2 and state 1 with proba-

bility 0.6 otherwise, for all t > 0 and σ.

Blume and Easley’s (2006) long-run survival results rely on the exogenously given

true p, but here we must solve for the endogenous state dynamics. Since the conditions

of Proposition 1 hold, we can use the replicator dynamics to track the consumption

shares, and hence the path of the economy. This gives the stochastic process

(x1
t , σt) =



(
0.6

0.6xt−1+0.4(1−xt−1)
x1
t−1, 0

)
w.p. 0.6(

0.4
0.4xt−1+0.6(1−xt−1)

x1
t−1, 1

)
w.p. 0.4

 if x1
t−1 ≥ 0.5(

0.6
0.6xt−1+0.4(1−xt−1)

x1
t−1, 0

)
w.p. 0.4(

0.4
0.4xt−1+0.6(1−xt−1)

x1
t−1, 1

)
w.p. 0.6

 otherwise

.

For instance, starting in state 0, and since the welfare weights (λ1, λ2) under logarithmic

utility are the initial wealth shares (0.5, 0.5), period-0 consumption shares are (0.6, 0.4)

by (2); Figure 1 then charts an illustrative first 200 periods of the process (x1
t (σ))t=0,1,....

We can see that, after a period of volatility, the first consumer dominates and the second

consumer vanishes. Whilst the reverse selection may of course occur for particular path

realizations, survival of the first consumer will be the average selection (under x̃it(σ))

for these parameters, since the expected increments to x1
t−1 ∈ [0.5, 1) can be shown to

be strictly positive. The selection becomes stronger, for instance, as T focuses more

weight on the state closest to Et−1(σt). Of course, the reverse selection would apply if

the process began in state 1.

4.2 A standard monetary economy

To take a macroeconomic example, let rt be the real rate of interest, Rt the nominal

rate of interest, and πet+1 the expected period-(t + 1) rate of inflation. Consider the

model consisting of a Fisher equation,

Rt = rt + πet+1, (F)

9
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Figure 1: Consumption share x1
t (σ), t = 0, 1, . . . , 200, given σ0 = 0

and a Taylor rule with a target rate of inflation π∗t ,

Rt = π∗t + rt +
1

a
(πt − π∗t ). (TR)

This is the frictionless limit of the New Keynesian model, which can be derived in the

general equilibrium setting of Sections 2 and 3, as I do in Appendix B.

Inflation in the model is

πt = π∗t + a(πet+1 − π∗t ). (5)

In a stationary (or “locally bounded”) equilibrium, πet+1 = πt; under a constant inflation

target π∗t = π∗,∀t, there is a unique such equilibrium πt = π∗,∀t, illustrated in Figure

2.11 In this equilibrium, the economy follows a constant path on π∗ for sure.12

11The locally bounded solution is also the “minimum state variable” (MSV) solution (McCallum
1981, 2003).

12However, there are many other equilibria satisfying πt+1 = π∗ + (1/a)(πt − π∗) (implying an
explosive path for inflation), and hence we have the classic indeterminacy of inflation under interest
rate targeting (Sargent and Wallace 1975; Cochrane 2011).
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∆π < 0

πt

rt

0 π∗

∆π > 0

TR

Rt

45◦

F

•

Figure 2: A Taylor rule

What will belief dynamics look like under market selection in this economy? I take

the state of the world σt in Section 2 to be the inflation target π∗t here, and I suppose

that it takes values on a finite grid Sε = {k, k + ε, k + 2ε, . . . ,K − ε,K} ⊂ Q. This

could be due to a particular measurement accuracy for inflation, with the lower and

upper bounds explained by the infeasibility of targeting inflation at very high (absolute)

rates. Let an ε-Dirac measure be a probability measure on Σ that, for all t and all σt−1,

places probability (1−ε) on a particular s̃ ∈ Sε in period t, and probability ε/(|Sε|−1)

on each s ∈ Sε\{s̃}. Clearly such a measure constitutes a Markovian belief, and if

all consumers hold such a belief, the weighted-average expectation Et−1 ≡ Ep(·|σt−1)

is independent of σt−1. Then, let ŝ = ψEt−1π
∗
t + (1 − ψ)π∗ for some ψ ∈ [0, 1) and

π∗ ∈ Sε, with ŝ lying in the real interval bounded by consecutive members (s, s) of Sε,

and let the Markovian state function T (xt−1(σ)) assign probability (s− ŝ)/(s− s) to s

and probability (ŝ− s)/(s− s) to s for all t > 0 and σ.13 Thus, the policymaker targets

some weighted average of a constant π∗ and the period-t inflation target expected by the

13Recall that the conditional belief pt(σ|σt−1) is the same as the consumption-weighted conditional

belief p̂t(σ|σt−1) by Lemma 1 above, and hence that Et−1 = Êt−1, with xt−1(σ) sufficient to calculate
Et−1 under ε-Dirac measures.
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representative consumer, with the stochasticity of T capturing (say) the measurement

error associated with rounding inflation to a value in Sε.14 Under such a T , I say

that the model has populist inflation targeting, noting that this nests the case ψ = 0

where the inflation target is an exogenous constant. A monetary policy shock (of which

populist inflation targeting is an instance) is the standard choice of state for this model,

and endogenizing it is also a common exercise (see, e.g., Cochrane 2011 p. 571).

Proposition 2 Suppose that P is the set of all ε-Dirac measures, that there is populist

inflation targeting, and that σ0 ∈ Sε is given. Then the expected motion (x̃t)t=0,1,...

of consumption shares approaches a Dirac measure on the equilibrium πt = π∗, ∀t, as

t→∞ and ε→ 0.

Proof. With P the set of all ε-Dirac measures, the conditions of Proposition 1 are

satisfied, and we will have xi0(σ) > 0 for all i under Axiom 2. X is a compact set that is

positively invariant with respect to the autonomous system (x̃t)t=0,1,....
15 Moreover, (4)

is locally Lipschitz in some open neighborhood Y of X in RI , by Lipschitz continuity of

each pt(σ|σt−1) in xt−1(σ) under T ; hence, so is Ep xt(σ).16 For any t and σ, if i’s belief

is the ε-Dirac measure on the realized σt, then xit(σ) → 1 as ε → 0 by (4), and hence

Etπ
∗
t+1 → σt by Lemma 1. And since σt → ψEt−1π

∗
t + (1 − ψ)π∗ in the same limit (as

the approximation of the finite grid Sε becomes exact), it follows that

∣∣Etπ
∗
t+1 − π∗

∣∣→ ψ
∣∣Et−1π

∗
t − π∗

∣∣ < ∣∣Et−1π
∗
t − π∗

∣∣
for σt 6= π∗ as ε → 0. Hence, V (x̃t) ≡ Ep |Etπ

∗
t+1 − π∗| is a continuous function such

that V (x̃t)− V (x̃t−1) is nonpositive in X as ε→ 0, equalling 0 only at the point {x∗}
where the consumption share of the ε-Dirac measure on π∗ is 1, which is an invariant

set. Hence, the economy approaches the required equilibrium as t→∞ and ε→ 0 by

LaSalle’s Theorem (Bof, Carli, and Schenato 2018, Theorem 2.4).

Destabilizing a liquidity trap To this point, the economy has had a unique sta-

tionary equilibrium. Here, I show how modelling market selection via evolutionary

dynamics can select between multiple stationary equilibria.

14Recall the existence of a representative trader with beliefs p under logarithmic utility (Rubinstein
1974, 1976).

15A set A is invariant with respect to (x̃t)t=0,1,... if x̃0 ∈ A ⇒ x̃t ∈ A, ∀t ∈ R. It is positively
invariant if x̃0 ∈ A⇒ x̃t ∈ A, ∀t ≥ 0.

16An autonomous system xt = f(xt−1) is locally Lipschitz in Y if each point in Y has a neighborhood
Y0 and a Lipschitz constant L0 such that, for every x, y ∈ Y0,

‖f(x)− f(y)‖ ≤ L0‖x− y‖.
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PR F

•

•

Figure 3: A liquidity trap

If we now posit a zero real interest rate and a zero lower bound to the nominal

interest rate Rt, then Benhabib, Schmitt-Grohé, and Uribe (2001, 2002) show that

adherence to the Taylor Principle (that the slope of the Taylor rule should exceed 1) in

the vicinity of π∗ implies a nonlinear policy rule Rt(π) with a second locally bounded

perfect foresight equilibrium πt = πL,∀t (local to which the Taylor Principle is violated),

as illustrated in Figure 3. Specifically, I follow Benhabib, Schmitt-Grohé, and Uribe in

analyzing the policy rule

Rt(π) = R∗t e
(A/R∗t )(πt−π∗t ), (PR)

where R∗t , A and π∗ are positive constants. In combination with the Fisher equation

(F), this implies that the nominal interest rate is strictly positive and strictly increasing

in the inflation rate, and that

πt = π∗t +
R∗t
A

ln

(
πet+1

R∗t

)
. (6)

If there is a constant inflation target π∗t = π∗,∀t, then R∗t = π∗ in equilibrium but

πt+1 = π∗e(A/π∗)(πt−π∗) is satisfied by constant paths on either π∗ or πL.

13



We are led to wonder which equilibrium to select.

Proposition 3 Suppose that R∗t = π∗,∀t, that P is the set of all ε-Dirac measures,

that there is populist inflation targeting, and that σ0 ∈ Sε is given. Then the expected

motion (x̃t)t=0,1,... of consumption shares approaches a Dirac measure on the equilibrium

πt = π∗,∀t, as t→∞ and ε→ 0.

Thus, under populist inflation targeting, the equilibrium πt = π∗,∀t, is selected over

the liquidity trap, πt = πL,∀t, with the proof identical to that of Proposition 2.

Appendices

A Markovian state and beliefs

Imposing a Markovian state and beliefs complicates the Blume and Easley (2006) model;

the Negishi problem (1) is no longer a complete description of equilibrium. We can,

however, employ the Kehoe, Levine, and Romer (1992) approach of characterizing equi-

librium as the solution to a Negishi-style Pareto problem with side conditions.

Describing the standard Negishi problem (1) in the language of Kehoe, Levine,

and Romer, the vector c is chosen to maximize the distorted social welfare function∑
i λiU

i(c), given a vector of parameters (λ1, . . . , λI), a constraint set{
c :
∑
i

ci − ω ≤ 0 and ∀i, t, σ, cit(σ) ≥ 0

}
,

and the additional conditions that Negishi’s savings functions be zero (giving binding

budget constraints). It can be shown that the welfare weights do not depend on the

realized path of the economy. How can this be? Surely the realized path could determine

whether consumer i vanishes, and hence whether he receives positive weight in the

Pareto problem? No, the fault in the logic here is that consumer i could vanish and

still receive positive expected utility under his (incorrect) belief pi. Since the Negishi

problem makes no reference to p, its solution remains unchanged and indeed Pareto

optimal under a Markovian state; competitive equilibrium is unaffected by endogenizing

the economy’s path, and Blume and Easley’s results continue to apply given a true path

of play. This is a particularly simple case of the Kehoe, Levine, and Romer framework

where the parameters of the original Negishi problem are unaltered (in contrast to their

examples with endogenous parameters).

14



Matters are more complicated under Markovian beliefs ρ1, . . . , ρI , since p1, . . . , pI are

now endogenously determined, necessitating a redefinition of competitive equilibrium.

In particular, if σt and xt(σ) are Ft-measurable, each belief pi must solve the following

infinite-dimensional fixed point problem:

pit(σ) =

∫
Σ

ρi(σt|xt−1(σ), σt−1) dpit−1(σ), t = 1, . . . , pi0(σ) = ρi0, (7)

where ρi0 ∈ ∆(S). For any fixed point pi of this problem, the first-order conditions

of the Pareto problem (1) must hold for the economy to be in equilibrium; I call c a

competitive equilibrium with Markovian beliefs ρ1, . . . , ρI if c solves (1) under p1, . . . , pI

solving (7). There is a substantial macroeconomic literature on the existence of Markov

(or recursive) equilibrium in competitive market economies. This is straightforward in

the standard frictionless, representative consumer case, and indeed under additional

side conditions (capturing frictions or endogenous variables) over a finite horizon, but in

infinite discrete time existence is an open question (Santos 2002; Kubler and Schmedders

2002).17

Hence, we must verify existence of a competitive equilibrium with Markovian be-

liefs: Given ρ1
0, . . . , ρ

I
0 and λ1, . . . , λI , x

i
0(σ) = λi

(
pi0(σ)

p0(σ)

)
from (2); then given ρ1, . . . , ρI

and σ0, pi1(σ) =
∫

Σ
ρi(σ1|x0(σ), σ0) dρi0(σ0), and xi1(σ) = λi

(
pi1(σ)

p1(σ)

)
. Iterating forwards,

we have a consistent set of finite-dimensional distributions, and hence unique beliefs

p1, . . . , pI on Σ by the Kolmogorov Extension Theorem. Since Markovian beliefs guar-

antee that Axioms 1–3 hold, and in particular that consumption is valued along all

paths by all consumers, a competitive equilibrium with Markovian beliefs then exists

by Peleg and Yaari (1970). But the welfare weights that solve (1) will depend on the

consumers’ beliefs, and the parameters of the optimization problem are hence endoge-

nous, so that there may be multiple such equilibria. Indeed, there can be a robust

continuum of equilibria near a steady state, i.e. indeterminacy (see Kehoe, Levine, and

Romer 1992, §5). However, under each fixed point we have a Pareto problem (1), whose

Euler equations then interact with the fixed point to determine the dynamics of that

equilibrium.

There may be multiple equilibria even in static economies, as in the heterogeneous

quasilinear utility examples of Shapley and Shubik (1977) and Bergstrom, Shimomura,

and Yamato (2009), but they are endemic in dynamic models under the imposition of

side conditions (Kehoe, Levine, and Romer 1992), and there have been many attempts

to select between them.18 In infinite horizon models, a popular equilibrium selection cri-

terion is “stability” (Blanchard and Kahn 1980; Obstfeld and Rogoff 1986), in the sense

17Hellwig (1982) provides an incomplete markets example in which the unique rational expectations
equilibrium is not Markov.

18For a review, see Driskill (2006).
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that the model’s variables converge to a stationary state, often owing to transversality

conditions.19 But some models have multiple stable equilibria (Calvo 1978), others have

none that are stable (McCallum 1999, pp. 625–6), and others still have nominal explo-

sions that transversality conditions cannot rule out (Cochrane 2011). An alternative

criterion requires that a solution be derived under the assumption that agents’ expecta-

tions are a function of a minimal set of state variables (Wallace 1980; McCallum 1983),

though the basis for this assumption and its resultant exclusion of “non-fundamental”

solutions is open to question. More recently, the criterion of “expectational stability”

or “learnability” has been proposed (Evans and Honkapohja 2001), and used by McCal-

lum (2009) to select the level of inflation targeted by a Taylor rule, although Cochrane

(2009) contests this result. As Subsection 4.2 shows, market selection offers another

avenue for selection between multiple rational expectations equilibria.

B Monetary economy derivation

In this appendix, I provide a detailed derivation connecting the model of Section 2 and

3 with the example of Subsection 4.2. It is a version of the popular Woodford (2003,

§2.1) complete markets cashless economy, modified to allow for consumer heterogeneity.

Let a money plan mi : Σ →
∏∞

t=0 R+ and an asset plan bi : Σ →
∏∞

t=0 R+ be

sequences of Ft-measurable R+-valued functions {mi
t(σ)}∞t=0 and {bit(σ)}∞t=0 capturing

respectively consumer i’s end-of-period nominal holdings of money (the economy’s unit

of account) and of all other financial assets. If ςst (σ) is the cylinder set {σt−1× s}×S×
S × · · · , each consumer i faces the problem

max
ci,mi,bi

Epi

{
∞∑
t=0

βtiu
i
σ(cit(σ))

}
, s.t. ∀t, σt−1, s :

γt(s)c
i
t(ς

s
t (σ)) +mi

t(ς
s
t (σ)) + bit(ς

s
t (σ)) ≤ γt(s)ω

i
t(ς

s
t (σ)) + ait(ς

s
t (σ)); (8)

cit(ς
s
t (σ)),mi

t(ς
s
t (σ)), bit(ς

s
t (σ)) ≥ 0,

where γt(s) is the state-contingent price of the good in terms of the monetary unit, and

ait(ς
s
t (σ)) is the total nominal value of all assets (including money) at the beginning of

period t in state s (given σt−1).

Letting nit+1(σ) be the state-contingent value of nonmonetary assets in period (t +

1), the absence of arbitrage opportunities implies the existence of a (unique) nominal

stochastic discount factor Dt,t+1 with the property that bit(σ) = Et[Dt,t+1nt+1], where

Et denotes the conditional expectation Ep(·|σt). Letting Rm
t be the nominal interest

19Transversality conditions rule out explosions in real variables by requiring their present value to
converge to zero as time goes to infinity.
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rate paid on money balances held at the end of period t, the beginning-of-period value

of all assets is given by ait+1(σ) = (1 +Rm
t )mi

t(σ) + nit+1(σ), and the budget constraint

(8) becomes

γt(s)c
i
t(ς

s
t (σ)) +mi

t(ς
s
t (σ)) + Et

[
Dt,t+1

(
ait+1 − (1 +Rm

t )mi
t

)]
≤ γt(s)ω

i
t(ς

s
t (σ)) + ait(ς

s
t (σ))

⇔ γt(s)c
i
t(ς

s
t (σ)) + νtm

i
t(ς

s
t (σ)) + Et

[
Dt,t+1a

i
t+1

]
≤ γt(s)ω

i
t(ς

s
t (σ)) + ait(ς

s
t (σ)),

where νt ≡ (Rt − Rm
t )/(1 + Rt), and Rt is the riskless one-period nominal interest

rate that solves 1/(1 + Rt) = EtDt,t+1 (i.e. the nominal interest rate on nonmonetary

assets).20 This constraint (and a borrowing limit ruling out Ponzi schemes) is satisfied

in each period if and only if

∞∑
t=0

∑
σt−1

∑
s∈S

pt(ς
s
t (σ))D0,t(ς

s
t (σ))

[
γt(s)c

i
t(ς

s
t (σ)) + νtm

i
t(ς

s
t (σ))

]
≤ ai0(∅) +

∞∑
t=0

∑
σt−1

∑
s∈S

pt(ς
s
t (σ))D0,t(ς

s
t (σ))γt(s)ω

i
t(ς

s
t (σ)),

where σ−1 ≡ ∅, p puts probability 1 on some initial state σ0, and Dt,T ≡
∏T

τ=t+1Dτ−1,τ ;

this is the single budget constraint characteristic of complete markets (see Woodford

2003, Proposition 2.1).

Together with the absence of arbitrage opportunities then, the first-order conditions

for agent i’s optimal choice of consumption imply that, for all t and σ:

1. there is a number αi > 0 such that if pit(σ) > 0, then

βtiu
i
σ’(cit(σ))pit(σ)− αipt(σ)D0,t(σ)γt(σt) = 0; (9)

2. if pit(σ) = 0, then cit(σ) = 0.

20The latter is because EtDt,t+1 prices the risk-free period-(t + 1) asset; since the model has just
one consumption good, this asset will simply pay 1 unit of consumption in each period-(t+ 1) state. It
is standard to set νt = 0 (i.e. Rt = Rm

t ) in equilibrium, so that positive quantities of money are held.
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From (9) we know that, under equal discount factors, for all i, t and σ,

βui
′
(cit+1(σ))pit+1(σ)

ui′(cit(σ))pit(σ)
=
pt+1(σ)D0,t+1(σ)γt+1(σt+1)

pt(σ)D0,t(σ)γt(σt)∑
s∈S

βui
′
(cit+1(ςst+1(σ)))pit+1(ςst+1(σ)|σt)

ui′(cit(σ))
=
∑
s∈S

pt+1(ςst+1(σ)|σt)Dt,t+1(ςst+1(σ))γt+1(s)

γt(σt)

Et dt,t+1 = EtDt,t+1Πt, (10)

where Πt ≡ γt+1/γt is the ratio of the price of consumption in period t + 1 to that in

period t and

dt,t+1(ςst+1(σ)) =
βui

′
(cit+1(σ))

ui′(cit(σ))

pit+1(ςst+1(σ)|σt)
pt+1(ςst+1(σ)|σt)

is the (unique) real stochastic discount factor prevailing in the cylinder ςst+1(σ) under

complete markets (Harrison and Kreps 1979, Sargent 2008 p. 9). Equation (10) is itself

a form of “Fisher” (or frictionless IS) equation, but in the limit as p approaches a Dirac

measure we have that
1

1 + rt
= πet+1

1

1 +Rt

,

where rt is the real rate of interest and πet+1 = Et(Πt|σt)−1 is the expected period-(t+1)

rate of inflation; linearization then gives a more familiar Fisher relation,

Rt = rt + πet+1. (F)

Clearly the economy’s path is undetermined as it stands, so I add a Taylor rule with

a target rate of inflation π∗t ,

Rt = π∗t + rt +
1

a
(πt − π∗t ), (TR)

and I assume that there is a “Ricardian” fiscal policy (that adjusts to satisfy the gov-

ernment budget constraint at any prices).21
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