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1 Introduction

As the technology of artificial intelligence develops, there is an increasing tendency for

firms to employ algorithms to set prices, raising the possibility that such algorithms

might collude.1 This collusion could be deliberate, in which case it is well covered

by the existing game-theoretic literature, but novel possibilities arise for collusion as

a bi-product of the use of algorithms and specifically the learning process in which

they engage. Whilst tacit collusion is a well-understood possibility in the absence of

algorithms, their presence could overcome the severe equilibrium selection problem in

infinitely repeated games (‘supergames’) that hitherto may have necessitated explicit

communication. ‘Reinforcement learning’ algorithms respond to a game’s history of play

by increasing the frequency with which successful strategies are played, and decreasing

that of unsuccessful strategies. Such algorithms do not require the players to know the

payoffs of the game, nor to construct a model of opponents’ play, removing possible

impediments to collusion.2 Moreover, ‘deep’ reinforcement algorithms in particular

can produce strategies that are complex and opaque (resembling a ‘black box’), with

convergence properties unknown even to the designers, impeding the detection and

regulation of any resulting anti-competitive conduct.3

In this paper, I exploit a connection between reinforcement learning and evolu-

tionary game theory to allow the modelling of algorithmic pricing via Taylor’s (1979)

‘replicator dynamics’. Under the replicator dynamics, the strategies used in a pop-

ulation of players increase in frequency if and only if they outperform the average

population strategy—a process with an intuitive ‘reinforcement’ flavour to it, made

precise by Börgers and Sarin (1997). I use this connection to show that limiting rest

points of the Cross (1973) model of reinforcement learning are Bayes–Nash equilibria

in a two-firm pricing supergame. Beyond this though, I use Sandholm’s (2002, 2005,

2007) evolutionary implementation to derive a system of Pigouvian taxation of pricing

algorithms that is guaranteed to lead such Cross-learning firms to an (unknown) socially

1‘Revenue management’ has a long history in hotel and airline pricing, but more generally, in 2015
more than a third of the vendors of bestselling items on Amazon had already automated their pricing
(Chen, Mislove, and Wilson, 2012).

2Salcedo (2015) finds collusive outcomes to be an inevitable consequence of optimized algorithms
that can periodically observe and “decode” the others before they are changed, but these assumptions
are perhaps too strong for practical relevance.

3A reinforcement algorithm is ‘deep’ (e.g. Silver et al., 2016, Mnih et al., 2015, Silver et al., 2018) if it
tracks the success of strategies via multiple non-linear function approximators called ‘neural networks’.
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optimal outcome.4 This implementation could most naturally be performed through

an appropriately designed platform for algorithmic pricing. I illustrate these theoret-

ical results through simulations, which show evidence both of equilibrium play under

the relevant conditions and of a collusive equilibrium selection being made. That this

occurs under the simplest strategic representation of collusion (the prisoner’s dilemma)

and under the simplest reinforcement algorithm (the Cross learning process) highlights

the ease with which such algorithms may collude in oligopoly. Finally, I impose the

optimal tax scheme for the game and show that it induces a non-collusive outcome in

the simulations—a seemingly essential intervention given the strength of the foregoing

collusive equilibrium selection.

Theoretical support for the collusive possibilities of algorithm use is weak at present.

Reinforcement learning (rooted in the work of Bush and Mosteller 1951, 1955) has been

one of the most successful machine learning techniques of recent years, with the ‘Q-

learning’ algorithm being a simple and popular example that is representative of more

complex approaches. Q-learning is an iterative procedure for estimating the value of the

actions available in different states of a decision problem, without full knowledge of its

payoffs or dynamic structure. It combines myopically sub-optimal ‘exploration’ of the

strategy space with optimal ‘exploitation’ of its accumulated learning—the ‘exploita-

tion’ component being closely related to the replicator dynamics (Tuyls, Verbeeck, and

Lenaerts, 2003b, Tuyls, ’T Hoen, and Vanschoenwinkel, 2006)—and under certain con-

ditions (e.g. vanishing exploration) it converges to the optimum in single-agent problems

(Watkins and Dayan, 1992). However, it lacks general convergence (let alone equilib-

rium) results in infinitely repeated games, owing to the intrinsically non-stationary

problem of strategic interaction.5 Nonetheless, Calvano et al. (2020) examine the inter-

action of Q-learning algorithms experimentally, and find that they consistently learn to

collude without communicating with one another, enforced by time-limited punishment

of defections that gradually gives way to renewed collusion.6 The degree of collusion

4In general, implementation theory characterizes mechanisms whose equilibrium outcomes satisfy
some social optimality criterion.

5For a survey of responses to this problem in the multi-agent systems literature, see Hernandez-
Leal et al. (2017). An early reference is Sandholm and Crites (1996); Nowé et al. (2012, §14.2.2)
provides a review of some of the surrounding issues. There are equilibrium convergence results for
reinforcement learning processes in normal-form games and extensive-form games (see, e.g., Shoham
and Leyton-Brown 2008, §7.4), but not for infinitely repeated games.

6See also Waltman and Kaymak (2008), as well as Klein’s (2021) investigation of a sequential
Maskin and Tirole (1988) model, and Calvano et al.’s (2021) exploration of the imperfect monitoring
case.
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decreases with the number of firms, but remains substantial if there are three or four.7

The Cross model is a simplified reinforcement learning process under which the

agent raises the probability of his chosen strategy in proportion to the resulting payoff

received, with all other choice probabilities reduced proportionally. In a seminal finding,

Börgers and Sarin (1997) establish that a continuous time limit of this model converges

to the replicator dynamics.8 The Cross model is seemingly special, and in particular

does not ‘explore’ currently unused strategies, which distinguishes it from popular re-

inforcement algorithms such as Q-learning. However, the main results in this paper

sidestep this feature by assuming that no strategies are initially unused, and indeed

some Q-learning processes (that converge to single-agent optima) have the resulting

property of vanishing exploration. Börgers, Morales, and Sarin (2004) show that a gen-

eralized form of Cross learning is a necessary condition for a learning rule’s performance

to improve from one period to the next in a constant environment—a seemingly basic

requirement for such a rule. Moreover, this generalized class—under which payoffs are

subject to certain affine transformations before Cross learning is applied—also admits

a close relationship with the replicator dynamics, which has been extended to other

reinforcement learning processes (Bloembergen et al., 2015). Since the convergence and

stability of evolutionary dynamics are well-studied, they offer a powerful toolkit for the

analysis of complex algorithmic dynamics, shedding light on the AI black box.

Furthermore, the connection with evolutionary game theory offers a possible frame-

work for the design of regulatory mechanisms. Sandholm (2002, 2005, 2007) provides

a framework for implementing socially optimal outcomes as stable solutions of a broad

class of evolutionary dynamics, using a system of transfer payments reminiscent of

Pigouvian taxation to internalize externalities (such as those caused to consumers by

collusive prices). Whilst standard Pigouvian taxes equilibrate an efficient outcome that

is assumed to be known to the social planner, Sandholm’s evolutionary implementation

has the planner ignorant of the preference information that would enable it to calculate

the efficient state; instead, his optimal tax schemes equilibrate a learning process guar-

anteed to reach a social optimum (wherever it may be). Equilibrium is hence obtained

as a conclusion rather than an assumption of the approach, and moreover, it is certain

to be efficient. His most general results rely on concavity of the social welfare function,

7Calvano et al. (2020, §V) explore whether other classic ‘plus factors’ for collusion are at work
in the Q-learned strategies; such plus factors offer evidence of collusion over and above the parallel
movement of prices, and include the number and symmetry of firms, and product substitutability.

8Other papers exploring this relationship include Posch (1997), Börgers and Sarin (2000), Hopkins
(2002), Ianni (2002), Sato and Crutchfield (2003) and Beggs (2005).
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which here implies a social preference for heterogeneous over homogeneous pricing rules,

and is quite plausible if an algorithm is more likely to collude with itself (in ‘self play’)

than with another algorithm.9 This in turn is quite plausible since many successful

reinforcement algorithms ‘propose, then adapt’ to a pattern of play (e.g. a particular

equilibrium), allowing symmetric algorithms to coordinate on the same outcome.10

There is a small emerging literature on mechanism design for algorithmic firms:

Johnson, Rhodes, and Wildenbeest (2020) explore a welfare-improving intervention in

e-commerce platforms, showing how market designers can improve competition between

Q-learning pricing algorithms by steering demand (through product prominence) as a

reward for apparent defection from a collusive agreement. Dong et al. (2017), mean-

while, offer a scheme for using ‘smart contracts’ in cloud computing “to stimulate ten-

sion, betrayal and distrust between the clouds, so that rational clouds will not collude

and cheat”. But whilst traditional mechanism design is a developed field of economics,

its wider application in a complex oligopolistic setting beset by multiple equilibria seems

likely to be challenging. Evolutionary implementation offers the advantages of both an

explicit behavioral link with reinforcement learning, and a unique, stable outcome.

2 The Model

There are two firms, R (Row) and C (Column), each of which chooses a pricing rule

from a finite set Sr = {1, . . . , nr}, r ∈ {R,C}.11 A pricing rule i ∈ Sr maps from its own

set Φi of features—which summarize properties of the market that may be important for

choosing a price—into the set R+ of possible prices. Features play an important role in

machine learning algorithms; for instance, in chess obvious features are the number and

type of pieces held by each player, whereas in oligopoly pricing relevant features might

include current inventory levels or recent price cuts by competitors.12 The firms may

use mixed strategies, which belong to the simplices X = {x ∈ RnR

+ :
∑

i∈SR xi = 1 }
and Y = { y ∈ RnC

+ :
∑

i∈SC xi = 1 } of probability mixtures, metrized by the standard

Euclidean distance. In order to define derivatives on X and Y , I will also have use for

their supersets X = {x ∈ RnR

+ :
∑

i∈SR xi ∈ I } and Y = { y ∈ RnC

+ :
∑

i∈SC yi ∈ I },
9The ‘self play’ paradigm in reinforcement learning (see DiGiovanni and Zell, 2021) involves an

algorithm playing the game against itself, either as a method of learning or as a performance criterion.
10Indeed, an algorithm achieving Pareto efficiency in self play is offered by Powers and Shoham

(2004).
11The restriction to two players is for the sake of expositional simplicity.
12Such features play an implicit part in Jehiel and Samet’s (2007) ‘similarity classes’.
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where I is an open interval containing 1. A mixed strategy is fully mixed if it places

strictly positive probability on each possible pricing rule; such a strategy belongs to the

interior, X◦ or Y ◦, of the relevant simplex.

Each firm chooses a pricing rule repeatedly through iterations m ∈ N, observing at

each iteration only its own strategy and profit (and not the other firm’s pricing rule).

Between iterations m and m + 1, I suppose that the firms compete infinitely often in

some pricing stage game (e.g. prisoner’s dilemma or differentiated Bertrand) via the

pricing rules chosen at m, say at times (m + ι)ι∈Q∩(0,1). This means that pricing rules

are adjusted more slowly than prices themselves, and that the full set of folk-theoretic

equilibria (including collusion) can be achieved by pricing rules.13 However, this timing

need not be taken as descriptive of the oligopolistic interaction, but rather could be

interpreted as the process of ‘training’ algorithms prior to their real-world use; each

iteration is then an adaptation of the pricing rules in light of their success in a single

simulation of the game.

Infinitely repeated games are employed in preference to finitely repeated games since

they represent the standard and simplest model of collusion in oligopolistic competi-

tion.14 Whilst the idea of an infinitely repeated game occurring between each iteration

may seem unrealistic, the standard hazard-rate interpretation of repeated games with

discounting will see each supergame terminate in finite time with probability one.15

Game theoretically, the reason for the use of this structure here is that the Cross

(1973) learning process below might be described as a ‘normal-form’ learning process,

because it acts on mixed strategies of the repeated game’s normal form as opposed to

the behavior strategies of the extensive form; Kuhn’s theorem (Kuhn, 1953, Aumann,

1964) reassures us of the outcome equivalence of these two approaches, although the

resulting algorithms may differ in terms of computational efficiency (as I discuss further

in the next section).

A firm’s expected profit in iteration m is the sum of an interaction profit, which

depends on both firms’ pricing rules, and an idiosyncratic profit, which varies from firm

to firm and only depends on the firm’s own pricing rule. Firm r’s interaction profit

13Barlo et al.’s (2016) bounded memory folk theorem, for instance, would be implementable by
pricing rules.

14However, whilst departures from stage Nash play are subject to the well-known unravelling ar-
gument in finitely repeated games, with the bounded complexity inherent in pricing rules we could
approximate all folk-theoretic equilibria of the prisoner’s dilemma in a large finitely repeated game
(Neyman, 1985). Thus, the focus on infinite repetitions is inessential.

15The hazard-rate interpretation of discounting in supergames is that the discount factor represents
the probability of the game ending after each repetition.
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when firm R uses pricing rule i and firm C uses pricing rule j is f r
ij, and captures any

external effects that the firms impose on one another through their choice of pricing

rule. For instance, if a firm chooses a highly competitive pricing rule, then it imposes a

negative externality on its opponent via interaction profits, whereas a collusive pricing

rule would impose a positive externality. Meanwhile, each firm r’s idiosyncratic profit

from using each pricing rule is determined by its type θ, which belongs to a finite set

Θr ⊆ Rnr
. For instance, a firm might be a small start-up that values a highly responsive

pricing rule, or it might be a large blue-chip company that values a predictable and

transparent pricing rule.

The pricing rule game played at each iteration m ∈ N is then defined by a triple

(π, µR, µC), where: µr ∈ M r = {ν ∈ RΘr

+ :
∑

θ∈Θr νθ = 1} is a type distribution, from

which firm r’s type is drawn at the start of the game; and πr
θ,i,j = f r

ij + θi ∈ [0, 1] is a

type-θ firm r’s profit from using pricing rule i against pricing rule j. Of course, this

game of incomplete information nests complete information as the special case where

µR and µC are degenerate. The bounds placed on profits are important only for their

scaling with probabilities under Cross learning (below); without them, we would simply

require some mapping of profits into the closed unit interval. Since there are finitely

many possible types, the set of pure Bayesian strategies in this game is finite, and the

pricing rule game is hence a finite normal-form game.

I assume that the firms update their strategies in each iteration of the pricing rule

game according to the Cross (1973) model of reinforcement learning. Specifically, if a

type-θ firm R’s strategy in iteration m places probability xθ,i(m) on pricing rule i, and

it then chooses i and receives profit πr
θ,i,j, then it updates its strategy in iteration m+1

such that

xθ,i(m+ 1) = πR
θ,i,j + (1− πR

θ,i,j)xθ,i(m)

xθ,i′(m+ 1) = (1− πR
θ,i,j)xθ,i′(m) for all i′ ̸= i.

Thus, the probability of the chosen pricing rule is updated to be a weighted average of

its old probability and the maximum probability 1, with the weight on the latter being

the profit that the pricing rule achieved; this weight is also used to scale down all other

choice probabilities appropriately.16 A type-θ firm C updates its iteration-m strategy

16Whilst reinforcement learning in general recognises the dilemma of balancing ‘exploitation’ of
previous learning with ‘exploration’ of the strategy space, the Cross learning model has rather limited
exploration, in the sense that it does not experiment with actions that are currently unused.
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yθ(m) in a similar manner. Given initial values (xθ(1), yθ(1)), these equations define

the Cross learning process {xθ(m), yθ(m)}m∈N. A continuous time limit of this process

is obtained from the equations

x̃θ,i(m+ 1) = τπR
θ,i,j + (1− τπR

θ,i,j)x̃θ,i(m)

x̃θ,i′(m+ 1) = (1− τπR
θ,i,j)x̃θ,i′(m) for all i′ ̸= i,

where τ ∈ (0, 1] measures the time between successive iterations of the game, and thus

scales the size of strategy adjustment made in response to current payoffs; the new

probabilities approach the old as τ → 0, in order to yield a smooth process. Similar

equations hold for firm C. Given the initial values (x̃θ(1), ỹθ(1)), the limit process

{x̃θ(m), ỹθ(m)}m∈N for a sequence of pairs (τ,m) such that τ → 0 and mτ → t describes

the firms’ strategies at the point t in continuous time.

Börgers and Sarin (1997) establish a close relationship between this limit process

and Taylor’s (1979) two-population replicator dynamics {x̂θ(t), ŷθ(t)}t∈R+ , where x̂θ and

ŷθ are differentiable functions on X and Y satisfying

dx̂θ,i

dt
= x̂θ,i(t)

(
eiπ

R
θ ŷθ,i(t)− x̂θ,i(t)π

R
θ ŷθ,i(t)

)
dŷθ,j
dt

= ŷθ,j(t)
(
x̂θ,j(t)π

C
θ ej − x̂θ,j(t)π

C
θ ŷθ,j(t)

)
, (1)

for all t ∈ R+, i ∈ SR and j ∈ SC , and ei is the unit vector with a one in the ith

row and zeros elsewhere. Given initial values (x̂θ(0), ŷθ(0)), these equations yield the

solution (x̂θ, ŷθ) of the continuous-time replicator equation.

Lemma 1 (Börgers and Sarin 1997) Suppose that for all τ , (x̃θ(1), ỹθ(1)) =

(x̂θ(0), ŷθ(0)) with probability 1. Consider some t with 0 ≤ t < ∞ and assume τ → 0

and mτ → t. Let x̂θ and ŷθ be the solution of the continuous-time replicator equa-

tion for initial values x̂θ(0) and ŷθ(0). Then (x̃θ(m), ỹθ(m)) converges in probability to

(x̂θ(t), ŷθ(t)).

Thus, if τ is small and mτ is close to t, then with high probability (x̃θ(m), ỹθ(m)) will

take values close to the solution of the continuous-time replicator equation at time t.

Convergence in probability captures the idea of a process being probabilistically approx-

imated by a sequence of other processes, with the degree of approximation becoming

closer as the sequence progresses. In particular, the probability of any given ‘error’ in

this approximation can be made to lie below any given value by taking a sufficiently
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high element of the sequence. Of course, between each iteration an infinitely repeated

game is still being conducted; thus, rather than compressing the timescale of firm inter-

action, this convergence should be viewed as identifying the amount of reinforcement

learning (or ‘training’ of the algorithm) required for the replicator dynamics to provide

a good approximation.

We may therefore use the replicator dynamics to describe the behavior of two firms

updating their strategies according to Cross’ reinforcement learning. In particular, we

can use the results of Sandholm (2005) to derive a socially optimal tax scheme for

pricing rules. Whilst I do not invoke the standard population-game interpretation of

the replicator dynamics, I do need some of the associated notation in order to draw

on Sandholm’s model. Viewing (1) as capturing a population game then, there would

be a unit mass of firms for each role, Row and Column, and X and Y would be the

sets of distributions of firms over pricing rules. Repeated random pairwise matching

of the firms would yield a linear common profit function for the Row population of

FR : Y → RnR
, where FR

i (y) is just the expected interaction profit fR
ij to pricing rule

i when the Column population’s pricing rule distribution is y. A similar function FC

determines the Column population’s common profit.

The type distributions (µR, µC) in this context just record the types present in each

population. The set of states under type distribution µ ≡ (µR, µC) is Zµ = {(zR, zC) ∈
RΘR×SR×ΘC×SC

+ :
∑

i z
r
θ,i = µr

θ for all r ∈ {R,C}, θ ∈ Θr}, where zrθ,i is the mass of

population-r firms of type θ that choose pricing rule i. Letting x(z) ≡
∑

θ∈ΘR zRθ ∈ X

and y(z) ≡
∑

θ∈ΘC zCθ ∈ Y denote the pricing rule distributions in state z ≡ (zR, zC) ∈
Zµ, the profit function Π : Zµ → RΘR×SR×ΘC×SC

is such that the population-R profit

from pricing rule i for firms of type θ when the state is z is given by

ΠR
θ,i(z) = FR

i (y(z)) + θi,

for each θ ∈ ΘR and i ∈ SR (and similarly for ΠC
θ,i(z)). A state z is a Bayes–Nash

equilibrium of (π, µR, µC) if all firms choose a best reply to the play of their opponents:

i ∈ argmax
i′∈Sr

Πr
θ,i′(z) if zrθ,i > 0, r ∈ {R,C}.

Again, it is important to note that, because the pricing rules are used to conduct

a supergame at each iteration, the Bayes–Nash equilibria of the pricing rule game

(π, µR, µC) are those attainable under the folk theorem (including collusion); if µR
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and µC are degenerate, for instance, the classic two-player, complete-information folk

theorem applies.

We can now establish a result linking Cross learning with equilibrium.

Proposition 1 Suppose that each of two firms updates its pricing rule according to a

Cross learning process {x̃θ(m), ỹθ(m)}m∈N, starting from a fully mixed strategy profile

(x̃θ(1), ỹθ(1)) ∈ X◦ × Y ◦. Consider a sequence of pairs (τ,m) such that τ → 0 and

mτ → t for some t ∈ R+. If (x∗, y∗) is a rest point of {x̃θ(m), ỹθ(m)}m∈N for all but

finitely many of the sequence of pairs (τ,m), then (x∗, y∗) is a Bayes–Nash equilibrium

of (π, µR, µC).

Proof. Suppose that for all τ , (x̃θ(1), ỹθ(1)) = (x̂θ(0), ŷθ(0)) with probability 1. Let x̂θ

and ŷθ be the solution of the continuous-time replicator equation for initial values x̂θ(0)

and ŷθ(0). If (x∗, y∗) is a rest point of {x̃θ(m), ỹθ(m)}m∈N for all but finitely many of

the sequence of pairs (τ,m), then it is also a rest point of {x̂θ(t), ŷθ(t)}t∈R+ by Lemma

1. And since interior trajectories of the replicator dynamics satisfy Sandholm’s (2005)

criteria for admissible evolutionary dynamics (Sandholm, 2002), the rest points of such

trajectories are Bayes–Nash equilibria by Sandholm’s (2005) Proposition 2.1.

Limiting rest points of the Cross learning process are thus Bayes–Nash equilibria of

the pricing rule game.17 The fully mixed starting point of the learning process is

required to rule out the replicator dynamics’ boundary rest points, and provides a form

of ‘exploration’ to the otherwise ‘exploitative’ Cross learning process.

But we would like to go further and implement an efficient equilibrium, which we

can do using Sandholm’s (2005) social planner. This social planner seeks to impose a

mechanism ensuring an efficient outcome to the game, but is subject to two constraints

in doing so:

i. hidden information—the planner knows the interaction profits (f r
ij)i,j,r, but has

no information about idiosyncratic profits (as captured by µ);

ii. anonymity—the planner’s mechanism may only condition on the firms’ chosen

pricing rule strategies.

17It follows that, in cases where the replicator dynamics converge, we have equilibrium convergence
of the limiting reinforcement learning processes. Of course, there is the important proviso that the
replicator dynamics themselves converge, but this is not a problem for Theorem 1 below, as discussed
in Remark 3.
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These translate the constraints of the Sandholm model into the two-firm Cross learning

context. The hidden information constraint is typical of mechanism design problems,

and makes the imposition of an efficient outcome more difficult for the planner to

achieve, but is likely to be faced in reality: Since interaction profits capture the external

effects of pricing rules on other firms, it is reasonable that the planner could observe

this through testing of pricing rules, but idiosyncratic profits would seem harder to

observe. Anonymity, meanwhile, is imposed by Sandholm in order to confine attention

to mechanisms that are easy to administer, in that they do not depend on the firms’

identities but only on their choices. Whilst this seems a desirable constraint to impose

on public policy, it does allow the planner to observe the firms’ strategies in addition to

their actions, which may be unrealistic in many cases. However, one context in which

this is a natural assumption is where firms are required to submit their strategies to a

platform for implementation (as in the Google AdWords auction, for instance).

The notion of efficiency that I employ is concerned, not just with firms (for whom

of course collusion would constitute an efficient outcome), but also with consumers.

Hence, it is measured both in terms of the profits obtained by the firms in a given

state,

Π
r
(z) =

∑
θ∈Θr

∑
i∈Sr

zrθ,iΠ
r
θ,i(z),

and in terms of the welfare U
O

: X × Y → R of outside parties. These are used to

define an efficient social choice correspondence incorporating the external effects on

consumers:

ϕO(µ) = argmax
z∈Zµ

Π
R
(z) + Π

C
(z) + U

O
(x(z), y(z)).

For every type distribution µ, ϕO(µ) specifies the set of population states that max-

imize total welfare among those that are feasible under µ, and is nonempty if U
O

is

continuous (on the compact Zµ) by Berge’s maximum theorem. The Row (or Column)

profit function in ϕO can be split into its total common profits F
R
(x, y) and its total

idiosyncratic profits Ī(zR):

Π
R
(z) =

∑
i∈SR

xi(z)F
R
i (y(z)) +

∑
θ∈ΘR

∑
i

zRθ,iθi

= F
R
(x(z), y(z)) + Ī(zR).

A firm-R tax scheme is a map TR : X×Y → RnR
, with TR

i (x, y) giving the tax to be
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paid by firm R when choosing pricing rule i under strategy profile (x, y). Its imposition

shifts the firm-R common profit from FR to FR−TR, whilst making no use of any type

information (in the sense that TR does not depend on any firm’s θ). Sandholm (2005)

explores tax schemes that globally implement a social choice correspondence ϕ, in the

sense that for each type distribution µ, the set ϕ(µ) is globally stable under any of a

broad set of admissible evolutionary dynamics. A successful tax scheme must serve two

roles, ensuring both that socially optimal play is always an equilibrium, and that this

equilibrium is always essentially unique and globally stable.

Theorem 1 Suppose: that each of two firms updates its pricing rule according to a

Cross learning process {x̃θ(m), ỹθ(m)}m∈N, starting from a fully mixed strategy profile

(x̃θ(1), ỹθ(1)) ∈ X◦ × Y ◦; that the function F
R
+ F

C
+U

O
is concave; and that pricing

rules are subject to the tax scheme

TR
i (x, y) = −

∑
j∈SC

yj
∂FC

j

∂xi

(x) +
∂U

O

∂xi

(x, y)


TC
j (x, y) = −

(∑
i∈SR

xj
∂FR

i

∂yj
(y) +

∂U
O

∂yj
(x, y)

)
.

Then, for every ε > 0, there exists a t ∈ R+ and a sequence of pairs (τ,m) with τ → 0

and mτ → t such that, for every δ > 0, the firms’ strategies (x̃θ(m), ỹθ(m)) are within

ε of the efficient social choice ϕO(µR, µC) with probability at least 1− δ.

Proof. Suppose that for all τ , (x̃θ(1), ỹθ(1)) = (x̂θ(0), ŷθ(0)) with probability 1. Let x̂θ

and ŷθ be the solution of the continuous-time replicator equation for initial values x̂θ(0)

and ŷθ(0). Given any ε > 0, there exists a t ∈ R+ such that (x̂θ(t), ŷθ(t)) is within ε/2

of ϕO(µR, µC) by Sandholm’s (2005) Theorem 5.1. Consider a sequence of pairs (τ,m)

such that τ → 0 and mτ → t. Then, for every δ > 0, (x̃θ(m), ỹθ(m)) is within ε/2 of

(x̂θ(t), ŷθ(t)) with probability at least 1− δ for all but finitely many of the sequence of

pairs (τ,m) by Lemma 1.

This is effectively Sandholm’s (2005) Theorem 5.1, modified for the two-population set-

ting and combined with Lemma 1. Under the given tax scheme, the tax that a firm pays

for choosing pricing rule i is equal to the marginal impact that the firm currently has on

the other firm’s profit and the welfare of outside parties by choosing this pricing rule.

The proof then establishes something akin to convergence in probability of strategies

12



to the efficient social choice, but where the relevant sequence of random variables is

constructed anew for each ε-neighborhood of the latter. Thus, true convergence applies

only ‘in the limit’ as τ → 0.

Remark 1 Under standard Pigouvian taxation, the planner sets taxes equal to the

marginal externalities created at the efficient state, thereby rendering it an equilibrium.

The planner is unable to do this here, as it knows neither the type distribution nor

hence the efficient state, so it sets taxes on the basis of current externalities. The effect

is that the learning trajectories leading to the efficient state (wherever it may be) are

implemented; the mechanism is that the taxes transform the pricing rule game into a

‘potential game’ (Monderer and Shapley, 1996). Intuitively, in such games, it is as

if each player were trying to maximize a common payoff function, yielding attractive

stability properties under evolutionary dynamics.

Remark 2 Without the concavity condition, the game (F − T, µR, µC) could admit

multiple stable equilibria, preventing global convergence of play. Concavity of F
R
+

F
C
+U

O
means that average pricing rule distributions are socially preferred to extreme

ones on interaction grounds (ignoring idiosyncratic profits)—i.e. that a greater variety

of pricing rules is beneficial to welfare. This is quite plausible if pricing rules are drawn

from a common set (SR = SC) and are more likely to collude in self play than against

different pricing rules.18

Remark 3 As discussed in Börgers and Sarin (1997, §5), Lemma 1 applies to arbitrary

but finite points in time, and is not true through infinite time; the asymptotic behavior

of the Cross learning process may be quite different from the asymptotic behavior of the

replicator dynamics if the latter fails to converge. This is the reason for Proposition 1’s

focus on rest points. Such asymptotic differences cannot arise in Theorem 1, however,

since the replicator dynamics converge under Sandholm’s optimal tax scheme.

Remark 4 In addition to Cross learning, there is a more general relationship between

reinforcement learning and the replicator dynamics. In particular, the replicator dy-

namics has been connected to reinforcement learning with an endogenous aspiration

level (Börgers and Sarin, 2000), to Learning Automata (Tuyls et al., 2002), and to the

popular Boltzmann Q-learning model (Tuyls, Verbeeck, and Lenaerts, 2003b, Tuyls, ’T

18Of course, whilst F
r
is bilinear, U

O
is not in general.
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Hoen, and Vanschoenwinkel, 2006). In the case of Q-learning, however, whilst the repli-

cator dynamics describe the selection (or ‘exploitation’) process at work, there is also an

additive mutation process capturing the ‘exploration’ aspect of reinforcement learning.

This mutation process favors strategies with higher entropy, and hence is inconsistent

with Nash convergence of the learning process, even for interior starting points; at best,

convergence under a persistently explorative process would be to a perturbed equilibrium

concept such as quantal response equilibrium (McKelvey and Palfrey, 1995). This takes

Q-learning with non-vanishing exploration outside of the class of learning processes

straightforwardly represented by Sandholm’s (2005) admissible evolutionary dynamics.

Some Q-learning models are, however, ‘Greedy in the Limit with Infinite Exploration

(GLIE)’, meaning that their exploration recedes to optimal exploitation over time, so

that the replicator dynamics describe their limiting behavior.19

3 Simulations

In this section, I illustrate the Nash rest points result of the previous section through

simulations of the Cross learning process on the prisoner’s dilemma. These simulations

also endorse the concern that reinforcement algorithms might learn to collude in an

oligopoly setting, for they do so reliably, especially under the conditions yielding equi-

librium play. Whilst evidence of this has previously been offered for Q-learning in a

repeated differentiated Bertrand game (Calvano et al., 2020), the fact that it extends to

such a simple strategic representation of collusion as the prisoner’s dilemma, under such

a simple reinforcement algorithm as the Cross learning process, highlights the ease with

which collusion may arise. Finally, I show how the tax scheme of Theorem 1 induces a

socially optimal outcome.

In particular then, I consider two firms of only one possible type (ΘR = ΘC = {0})
repeatedly playing the prisoner’s dilemma in figure 1 (where the payoffs are normalized

to lie in the interval (0, 1) for the sake of their probabilistic scaling under the Cross

learning process). Since I wish to explore the full collusive possibilities of this game

without focusing on the role of the discount factor, I use time-average payoffs, which

can be thought of as the limiting case where firms become arbitrarily patient. I take

the space of pricing rules to be defined by restricting the firms to a memory of length

1, as in Calvano et al. (2020). There being only four possible action profiles in the

19Tuyls et al. (2003a) develop a reinforcement learning algorithm that always attains a stable Nash
equilibrium, based on an extension of the replicator dynamics.
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Figure 1: Prisoner’s dilemma

prisoner’s dilemma, the resulting set of pricing rules conditions on just four features,

yielding a common set SR = SC of cardinality 16 (listed in full in the Appendix).

The reasons for choosing the prisoner’s dilemma over (say) the more complex dif-

ferentiated Bertrand game studied by Calvano et al. are twofold. First, the prisoner’s

dilemma is the most parsimonious representation of the incentive to collude in oligopoly

competition, capturing in a reduced form a variety of strategic settings. Second, and

relatedly, the Cross learning process as elaborated in the previous section is a normal-

form learning process, in that it acts on the entire repeated-game strategy profile at

each iteration. By contrast, the extensive-form Q-learning process employed by Calvano

et al. acts on the space of possible action profiles available in the realized subgames of

a single repeated game. Whilst the two approaches are equally valid for the theoreti-

cal characterization of convergence behavior, the extensive-form approach economizes

significantly on the information it records at each iteration, and hence makes drastic

gains in computational efficiency (a point made stark in Jehiel and Samet 2005). This

means that implementation of the Cross process would be computationally prohibitive

on Calvano et al.’s pricing game.

Proposition 1 establishes Nash rest points for the Cross learning process as τ → 0,

and the effect of reducing τ is apparent from a comparison of the charts in figure 2.

These plot the frequency of the pricing rules s = (sR, sC) across 100 simulations of 50000

iterations of the Cross learning process (starting from an equal-weight mixture), for τ
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Figure 2: Simulation results for high, medium and low τ

values of 1, 0.1 and 0.01. Whereas there is significant weight placed on disequilibrium

pricing rules when τ = 1, this diminishes when τ is reduced to 0.1 and especially

0.01. In the latter case, the support of the average strategy profile is almost entirely

confined to pricing rule s7, which is the ‘grim-trigger’ strategy that plays C if and only

if both players have never played D. The τ = 1 case tallies with the notable incidence

of disequilibrium play under Calvano et al.’s Q-learning process, whereas τ = 0.01

and Proposition 1 point a way towards equilibrium convergent reinforcement learning

processes.20

The other obvious feature of these simulations is that they make a collusive equi-

librium selection; the ‘grim-trigger’ pricing rule s7 of course sustains cooperative play

20An alternative approach to guaranteeing equilibrium convergence under reinforcement is to intro-
duce a gradient ascent element into the process, as in Tuyls et al. (2003a).
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when paired against itself, yielding full collusion from a cooperative initial history and

slightly over a quarter of excess monopoly profit from a random initial history. This

agrees with Calvano et al.’s evidence of systematic collusion under Q-learning; here

the equilibrium play afforded by a vanishing τ focuses almost all weight on a collusive

pricing rule, corresponding to the almost perfectly collusive strategies achieved under

Q-learning with a fully mixed initialization (Calvano et al. 2020, p. 3292). The fact

that collusion arises so readily even under the simple Cross learning process suggests

that an intervention such as the previous section’s Pigouvian pricing scheme is essen-

tial to avoid anti-competitive outcomes. Proposition 1 clearly does not account for this

equilibrium selection, to which I plan to return theoretically in future work.

What would the optimal Pigouvian pricing scheme look like here? Let us assume

that any excess profit over the socially optimal 0.2 is a direct transfer from consumers

to firms, and that dij is the deadweight loss suffered under the pair (i, j) of pricing rules,

with the function d(x, y) describing the expected deadweight loss under the strategy

profile (x, y). Then there exists some constant WO > 0 such that:

U
O
(x, y) = WO − (F

R
(x, y)− 0.2)− (F

C
(x, y)− 0.2)− d(x, y).

In particular, let us assume that dij is half of aggregate excess profits under (i, j)

(yielding a bilinear F
R
+ F

C
+ U

O
). The socially optimal tax scheme in Theorem 1 is

then

TR
i (x, y) =

∑
j∈SC

yj(π
R
ij + dij)

TC
j (x, y) =

∑
i∈SR

xi(π
C
ij + dij),

where πr is the pricing rule game’s per-period payoff matrix (given in the Appendix).

Each firm is thus taxed the expected value of the sum of its own profit and the dead-

weight loss resulting from the pricing rules—i.e. the expected external cost of its chosen

pricing rule. Re-running the above τ = 0.01 simulations with this tax scheme yields the

average strategy profile in figure 3, where weight is now focused largely on the ‘always

defect’ pricing rule s15, with a little weight on some other almost competitive outcomes

and the chance of coordination on the ‘grim-trigger’ pricing rule reduced to 0.012.
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Figure 3: Post-tax simulation results for low τ

4 Conclusion

In summary, this paper adds to Calvano et al.’s (2020) simulation evidence that re-

inforcement algorithms tend to collude in oligopoly pricing, showing this behavior to

emerge in the canonical setting of the repeated prisoner’s dilemma and under the highly

simplified Cross learning process. It also makes theoretical progress towards accounting

for this phenomenon by showing that the rest points of certain Cross learning processes

are Bayes–Nash equilibria. Whilst this does not guarantee convergence of these pro-

cesses, it is the first result tying stability of reinforcement learning to equilibrium in

infinitely repeated games. There remains a gap between this theoretical result and a

satisfying explanation of the collusive equilibrium selection that seems to emerge empir-

ically. However, I do offer a policy avenue for correcting the resulting anti-competitive

behavior; Sandholm’s (2002, 2005, 2007) evolutionary implementation prescribes taxes

on algorithmic pricing rules that induce a competitive outcome without the demanding

informational assumptions typically associated with Pigouvian taxation. In the sim-

ple prisoner’s dilemma simulation conducted in the last section, this requires firms to

be taxed the expected profits and deadweight loss resulting from their chosen pricing

rules; more generally, it forces firms to internalize the externalities that their pricing

rules impose on other agents at any given moment. Whilst Cross learning is quite

special, it shares properties with other reinforcement algorithms to which evolutionary

dynamics can be linked. This seems likely to be a useful approach in confronting the

policy questions raised by the advancing capabilities of artificial intelligence.
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Appendix

The sixteen possible memory-1 pricing rules for the simulations in Section 3 are as

follows:

s0 =

[
1 1

1 1

]
s1 =

[
1 1

1 0

]
s2 =

[
1 1

0 1

]
s3 =

[
1 1

0 0

]

s4 =

[
1 0

1 1

]
s5 =

[
1 0

1 0

]
s6 =

[
1 0

0 1

]
s7 =

[
1 0

0 0

]

s8 =

[
0 1

1 1

]
s9 =

[
0 1

1 0

]
s10 =

[
0 1

0 1

]
s11 =

[
0 1

0 0

]

s12 =

[
0 0

1 1

]
s13 =

[
0 0

1 0

]
s14 =

[
0 0

0 1

]
s15 =

[
0 0

0 0

]

where the matrix entries give the probability of action C following each of the four action

profiles (C,C), (C,D), (D,C) and (D,D).21 The pricing rule game’s per-period payoff

matrix πr—obtained by simulating the time-average payoffs until they converged—is

then:

0.4 0.396 0.331 0.247 0.397 0.392 0.238 0.193 0.25 0.25 0.107 0.104 0.25 0.25 0.104 0.1

0.402 0.356 0.336 0.282 0.393 0.356 0.183 0.195 0.250 0.235 0.11 0.124 0.25 0.239 0.105 0.129

0.426 0.415 0.362 0.266 0.397 0.392 0.308 0.18 0.33 0.298 0.204 0.232 0.250 0.25 0.107 0.102

0.447 0.393 0.395 0.307 0.373 0.318 0.309 0.218 0.385 0.309 0.308 0.192 0.299 0.229 0.203 0.151

0.401 0.4 0.397 0.28 0.352 0.326 0.393 0.215 0.333 0.333 0.233 0.15 0.3 0.3 0.233 0.15

0.404 0.353 0.4 0.306 0.323 0.304 0.3 0.253 0.334 0.296 0.3 0.199 0.3 0.27 0.266 0.197

0.449 0.469 0.419 0.309 0.396 0.303 0.395 0.203 0.492 0.491 0.31 0.248 0.3 0.267 0.233 0.15

0.475 0.413 0.478 0.311 0.359 0.246 0.362 0.256 0.496 0.428 0.492 0.264 0.35 0.207 0.35 0.198

0.45 0.449 0.377 0.289 0.333 0.333 0.110 0.104 0.3 0.234 0.236 0.105 0.3 0.233 0.198 0.102

0.45 0.383 0.377 0.304 0.333 0.309 0.108 0.125 0.367 0.205 0.308 0.178 0.3 0.204 0.109 0.153

0.497 0.495 0.418 0.252 0.367 0.3 0.287 0.106 0.34 0.287 0.306 0.186 0.3 0.233 0.254 0.104

0.498 0.42 0.396 0.321 0.35 0.206 0.288 0.180 0.491 0.274 0.392 0.231 0.35 0.203 0.258 0.181

0.45 0.449 0.449 0.285 0.3 0.3 0.3 0.151 0.3 0.3 0.3 0.151 0.3 0.3 0.3 0.15

0.45 0.39 0.449 0.323 0.3 0.279 0.267 0.202 0.367 0.207 0.367 0.202 0.3 0.257 0.267 0.198

0.499 0.496 0.494 0.325 0.367 0.267 0.367 0.151 0.39 0.49 0.348 0.259 0.3 0.267 0.3 0.15

0.5 0.422 0.497 0.329 0.35 0.208 0.35 0.204 0.498 0.329 0.493 0.269 0.35 0.203 0.35 0.2



21The initial history is uniformly randomized.
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