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Abstract

The Hahn problem is that, even if a “monetary” equilibrium with valued fiat
money exists in general equilibrium, a “nonmonetary” equilibrium with a zero
price on money generally also exists; why should we expect the former over the
latter? Here, I consider the preferences that will survive repeated trading in an
exchange economy where agents compete in biological fitness. With unobserv-
able preferences and positive assortativity in matching, evolutionarily stable
preferences implement the competitive equilibrium that maximizes the sum of
agents’ fitnesses. In a standard Bewley–Townsend model, this implies selec-
tion of the monetary over the nonmonetary equilibrium, and also implies the
survival of agents with “money in the utility function”. Journal of Economic
Literature Classification: C73, D5, E4
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Trust in fiat money is only a recent development, and even today
such faith is hardly universal. (Cass and Shell 1980)
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1 Introduction

The value of fiat money in general equilibrium poses some well-known problems:

“There is always the possibility (in some models, the necessity) of the equilibrium

price of fiat money to be nil” (Starr 1989, p. 292), demonetizing the model. This

is the Hahn problem (1973)—to articulate general-equilibrium models where money

is essential.1 It “could be that all households would be better off if the price of

money were positive. . . but this does not imply that zero price is a disequilibrium

price” (Cass and Shell 1980). Hence, conditions for the existence and selection of a

monetary equilibrium are of paramount interest.

There are of course some well-known responses to this problem in monetary the-

ory. Some approaches assume an additional value of money: “money in the utility

function” (MIU); the “cash-in-advance constraint”; and models where money can be

used in payments to the government (Obstfeld and Rogoff 1983; Ritter 1995; Aiyagari

and Wallace 1997; Li and Wright 1998). There are others that dispense with market

completeness to give money value as a store of wealth for overlapping generations

(Samuelson 1958; Wallace 1980) or insurance (Bewley 1980; Townsend 1980). And

there are others still that dispense with the Arrow–Debreu frictionless, timeless cen-

tralized market to give money value as a matching lubricant (Kiyotaki and Wright

1989, 1993; Shi 1995; Trejos and Wright 1995), or because it is expected to have

value in a temporary equilibrium (Grandmont 1974). The Fiscal Theory of the Price

Level (Leeper 1991; Woodford 1995) pins down the value of money as a claim on the

government’s balance sheet, Kocherlakota (1998) has money play an essential role in

recording transactions, and Wallace and Zhu (2004) justify fiat money as the limit of

a commodity-money system (see also Araujo and Guimaraes 2014).

Thus, whilst the Hahn problem can hardly be said to be unresolved, perhaps

the most widely used response is the MIU approach, albeit to the disapproval of a

sizeable number of economists, who regard it as a reduced form at best and ad hoc

at worst. But why is there such adamance that fiat money should not appear in the

utility function? Wallace (1996), for instance, offers the dictum that “money should

not be a primitive in monetary theory”. For Lagos, Rocheteau, and Wright (2017, p.

1This is distinct from the “modified Hahn problem” (Hellwig 1993) or “rate-of-return dominance
puzzle” of why fiat money should survive in the presence of substitutable interest-bearing assets,
which this paper does not address. Wright (1995) does analyse the question of which of multiple
goods might serve as money from an evolutionary perespective.
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332), meanwhile, anything (such as MIU) that deviates from the discipline of deriving

the value of assets endogenously “is obviously subject to the Lucas critique”. And

indeed, it seems compelling that money should not feature in the utility function by

assumption. But that does not mean that it should not feature in the utility function

at all ; it merely calls for a theory that explains money’s appearance in the utility

function endogenously.2 This leads naturally to the theory of preference evolution.

Preference evolution views preferences not as fixed and exogenous, but rather as

subject to selection according to their success in an underlying biological contest. One

particularly prominent approach in this field has been that of “indirect” preference

evolution (Güth and Yaari 1992), whereby utility is determined according to the

biological “fitness” that it brings in some underlying game. When such utility is

observable, it carries a commitment power, which often favors efficient outcomes

enforced by non-fitness-based preferences (Dekel, Ely, and Yilankaya 2007). However,

when preferences are unobservable and matching is nonassortative, these results break

down in favor of Nash outcomes enforced by players maximizing fitness (Ely and

Yilankaya 2001). Nevertheless, if matching is assortative, Alger and Weibull (2013)

demonstrate that stable unobservable preferences still depart from biological fitness.

In particular, in such circumstances, evolution favors a utility function that is a

convex combination of standard self-interest and “Kantian” preferences that evaluate

a choice on the assumption that others will also choose it.

This Kantian motivation represents an interesting force from the perspective of the

Hahn problem, for it suggests a mechanism for coordinating on monetary equilibrium

if there are collective gains to doing so. Indeed, the theory of preference evolution

offers a natural expression of the idea that fiat money is intrinsically worthless—that

it should yield no biological fitness directly. This seems unarguably to be the case;

pieces of paper give me no reproductive advantage in and of themselves. However, it

is perfectly plausible that evolution might lead me to derive utility from such pieces

of paper, if this leads me to behave in a way that is to my reproductive advantage.

Moreover, in so doing, it might select a monetary equilibrium over a nonmonetary

one, thus addressing the Hahn problem.3

This is the nature of the results that I establish in this paper. To begin with,

2MIU also has the attraction that it is the only approach to a monetary equilibrium that can
leave the centralized, timeless competitive approach intact.

3Admittedly, the set of monetary equilibria may still be large (Matsuyama 1991).
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I specify a general two-agent exchange economy that allows for the possibility of

money, and then offer a Bewley–Townsend example that has both a monetary and a

nonmonetary equilibrium, as per the Hahn problem.4 I go on in Section 3 to specify a

population game amongst individuals matched to trade as in Section 2. This game fits

the model of Alger and Weibull (2013), and hence implies the selection of preferences

that place some weight on what would happen if all individuals played the same way.

As a result, evolutionarily stable preferences under positive assortativity implement

the competitive equilibrium from Section 2 that maximizes the sum of individual

fitnesses. This equilibrium need not be Pareto-optimal (in fitnesses), but there can

exist no other equilibrium Pareto-superior to it. In the Bewley–Townsend example,

the monetary equilibrium is selected; by contrast, a type that is programmed to play

the nonmonetary equilibrium is evolutionarily unstable.

2 The Hahn Problem

Suppose that there are two agents i = A,B who trade a single consumption good and

fiat money in an exchange economy through discrete time t ∈ T ⊆ N. Agent A is

endowed with ωAt ∈ [0, C] units of the consumption good in period t, andmA
−1 ∈ [0,M ]

units of unbacked, intrinsically useless money prior to trading; agent B is endowed

with C−ωAt units of the consumption good in period t, and M −mA
−1 units of money

prior to trading. Each agent must determine his plan x = (ci,mi), consisting of a

consumption plan ci ≡ (ci0, c
i
1, . . .) ∈ [0, C]T and a money plan mi ≡ (mi

0,m
i
1, . . .) ∈

[0,M ]T , given the common payoff function v(cit), where pt ∈ R+ ∪ {∞} ≡ P is

the (relative) price of consumption in period t. Thus, money does not affect agents’

payoffs, and may also have no value, since pt may take the value ∞ in the one-point

compactification of the positive real line, R+ ∪ {∞}.5 Call this economy E , and

suppose that it is regular in the sense of Debreu (1970).

Letting p ∈PN be the price path through time, competitive equilibrium requires

4Note that the results are not specific to bilateral trade, but rather could be extended to a
multi-agent aggregative setting using Alger and Weibull (2016).

5Such a compactification of the price set is of course common when dealing with relative prices
in general equilibrium, for instance in the classical proof of equilibrium existence.
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that markets clear when each agent i solves the problem6

max
ci,mi

∑
t∈T

βtv(xt),

s.t. ptc
i
t +mi

t ≤ ptω
i
t +mi

t−1, ∀t ∈ T

∀t, i cit ∈ [0, C], mi
t ∈ [0,M ]. (1)

Thus, agents’ endowments are only storable through money. The Lagrangian for this

problem is

L =
∑
t∈T

βt

(
v(xt) + λit

[
ptω

i
t +mi

t−1 − ptcit −mi
t

])
(2)

subject to cit ≥ 0, mi
t ≥ 0, where {λit}t∈T is a sequence of nonnegative La-

grange multipliers. Let x̂ = (ĉi, m̂i) denote the optimal plan of an agent. A

competitive equilibrium (xA, xB, p) will be described as maximal if it maximizes∑
t∈T βtv(xAt ) +

∑
t∈T βtv(xBt ) in the set of competitive equilibria. Whilst max-

imality is neither necessary nor sufficient for a competitive equilibrium to be

a Pareto-optimal allocation, there can exist no competitive equilibrium that is

Pareto-superior to a maximal competitive equilibrium.

Example Consider Sargent’s (1987, §6.6) infinite-horizon example of the

incomplete-markets model of Bewley (1980) and Townsend (1980), where all private

loan markets are closed. Agent A is endowed with ωA ≡ {ωA1 , ωA2 , ωA3 , ωA4 , . . .} =

{1, 0, 1, 0, . . .} units of the consumption good and mA
−1 = 0 units of unbacked

money prior to trading; agent B is endowed with ωB ≡ {ωB1 , ωB2 , ωB3 , ωB4 , . . .} =

{0, 1, 0, 1, . . .} units of the consumption good and mB
−1 = M units of unbacked money

prior to trading. The first-order necessary conditions for a solution to (1) are

βt[v′(xit)− λitpt] ≤ 0, = 0 if cit > 0, t = 0, 1, . . .

−βtλit + βt+1λit+1 ≤ 0, = 0 if mi
t > 0, t = 0, 1, . . .

lim
T→∞

−βTλiT ≤ 0, lim
T→∞

βTλiTm
i
T = 0. (3)

6This set-up could straightforwardly be extended to incorporate uncertainty and hence rational-
expectations equilibrium in general.
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The first two equations are equivalent to

v′(xit) ≤ λitpt, = if cit > 0, (4)

λit+1

λit
≤ 1

β
, = if mi

t > 0. (5)

Sargent (1987, §6.6) shows that there exists a competitive equilibrium of this economy

with

cAt =

{
c∗, t even

c∗∗, t odd
cBt =

{
c∗∗, t even

c∗, t odd

mA
t =

{
c∗∗p, t even

0, t odd
mB
t =

{
0, t even

c∗∗p, t odd.

c∗ + c∗∗ = 1 and pt = p = M/c∗∗ for all t. In this equilibrium, unbacked currency

is valued and the agents pass money back and forth in an effort to smooth their

consumption paths. However, note that (3), (4) and (5) are also satisfied by pt =∞,

mi
t = 0 for all t—i.e. there is another equilibrium where money has no value and is

not demanded. Whilst this model allows a monetary equilibrium then, it also has

an autarkic nonmonetary equilibrium, and it is not clear why we should select the

former over the latter. Note for now though that the monetary equilibrium is not

optimal (which would require a diminishing stock of money, as described in Sargent

1987, §6.7), but it is maximal.

3 Homo Monetarius

Suppose now then that an individual is matched to trade with an agent selected

exogenously at random (and possibly assortatively) from a larger population of indi-

viduals. In this section, I define a game of this nature that fits within the framework

of Alger and Weibull (2013): supposing that a certain “resident” preference type has

become the predominant one in the population, do there exist other “mutant” pref-

erence types that can invade the population, by inducing equilibrium plans under

which mutants’ average fitness is at least as high as that of residents? Preference

types that withstand such invasion by all other preference types are said to be evo-

lutionarily stable. I show that, under assortative matching, evolutionary stability
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selects a maximal competitive equilibrium in general, and the monetary equilibrium

of the Bewley–Townsend model in particular. The evolutionary framework within

which I work is symmetric, and hence I symmetrize the game by having the two trad-

ing agents assume the roles (A,B) or (B,A) with equal probability (as per Selten

1980, Alger and Weibull 2013, §6.1).

Endow the space PN of price paths with the product topology (over the count-

able number of time periods), and do likewise for each of the spaces [0, C]N and

[0,M ]N of consumption and money plans. Suppose then that each individual has as

a common strategy set X the topological vector space of continuous mappings from

{A,B}×PN into [0, C]N× [0,M ]N, endowed with the compact-open topology (which,

given the metrizability of the codomain, coincides here with the topology of uniform

convergence on compact sets). Since the domain of this function space is compact,

X is equicontinuous, and since the codomain is also compact, X is pointwise rela-

tively compact; it follows that X is itself then compact in the topology of uniform

convergence on compact sets by the Arzelá–Ascoli theorem. Moreover, if any convex

combination with {∞} is itself {∞}, both the domain and the codomain of a strategy

is convex, and hence so is the strategy space.

A typical strategy x = (xi)i∈{A,B} specifies the individual’s consumption and

money plans (ci,mi), as a continuous function of the price path p, given the individ-

ual’s role i. Given a pair (x, y) of strategies, each individual has a symmetric fitness

function

π(x, y) =
1

2

∑
i∈{A,B}

∑
t∈T

βtv(xit(p̂t(y))),

where p̂(y) is a market-clearing price path under the plans (yA, yB). Notice that

fitness π(x, y) is the expected value V (x, p̂(y)) of the agent’s discounted payoffs from

the plan x along the price path p̂(y). Moreover, in common with the economy E ,

the agents are price-takers ; they are not able to manipulate the equilibrium price,

which is determined from the opposing agent’s plan y.7

Remark Is it reasonable for p̂ to depend on y and not on x? Price-taking requires

7For the issues arising absent the price-taking assumption, see the rich literature exploring the
implementation of the outcomes of competitive equilibria (Hurwicz 1979; Schmeidler 1980; Postle-
waite and Wettstein 1983; Groves and Ledyard 1987; Hurwicz, Maskin, and Postlewaite 1995; Hart
and Mas-Colell 2015) and expectations equilibria (Palfrey and Srivastava 1987, 1989; Blume and
Easley 1990; Wettstein 1990) in games.
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that the price be independent of x, but why then is it dependent on y? Because y

captures the plans of the rest of the market, which here is just one other agent but

more generally could be an arbitrary number of agents; and whilst one agent’s plan

becomes insignificant as the number of agents grows, the plans of all other agents do

not. Hence, this formulation of p̂(y) is analogous to ruling out strategic play in a two-

person exchange economy, which is the case of interest here. Moreover, as mentioned

earlier, the model can straightforwardly be extended to a multi-agent aggregative

setting using Alger and Weibull (2016).

By virtue of E ’s regularity, a straightforward application of the Implicit Corre-

spondence Theorem (see Mas-Colell 1985, Theorem J.3.3) yields that the price path

p̂ is a continuous function of y, and hence π is a continuous function of (x, y) (since

x(p) is continuous in both x and p).

Whilst biological fitness is thus determined by the trading outcome of E , the in-

dividuals’ preferences—and hence choices—are determined by evolutionary selection,

according to their fitness in the resulting trades. This is the “indirect” evolutionary

approach of Güth and Yaari (1992), but since preferences are assumed to be unob-

servable, the framework I use is that of Alger and Weibull (2013). Specifically, each

individual has a private type θ ∈ Θ. It will be sufficient here to consider popula-

tions with two types present, as captured in the population state s = (θ, τ, ε), where

θ, τ ∈ Θ are the two types and ε ∈ (0, 1) is the population share of type τ . If ε is

small, θ is referred to as the resident type and τ the mutant type. In a given state

s ∈ S ≡ Θ2× (0, 1), let Pr[τ |θ, ε] be the probability that a given individual of type θ

is matched with an individual of type τ .

An individual’s type θ defines a utility function uθ : X2 → R, which completes

the description of a standard Bayesian game G . No particular relation between uθ

and π is assumed, but uθ is assumed to be continuous. For each state s ∈ S, any

strategy x ∈ X used by type θ and any strategy y ∈ X used by type τ , the resulting

average fitness to each type is

Πθ(x, y, ε) = Pr[θ|θ, ε] · π(x, x) + Pr[τ |θ, ε] · π(x, y),

Πτ (x, y, ε) = Pr[θ|θ, ε] · π(y, x) + Pr[τ |θ, ε] · π(y, y).

In any s ∈ S, meanwhile, a strategy pair (x∗, y∗) ∈ X2 is a Bayesian Nash equilibrium
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(BNE) of G if{
x∗ ∈ arg maxx∈X Pr[θ|θ, ε] · uθ(x, x∗) + Pr[τ |θ, ε] · uθ(x, y∗),
y∗ ∈ arg maxy∈X Pr[θ|θ, ε] · uτ (y, x∗) + Pr[τ |θ, ε] · uτ (y, y∗).

(6)

Alger and Weibull (2013) define evolutionary stability of types on the assumption

that the resulting fitnesses are determined by this equilibrium set: a type θ ∈ Θ

is evolutionarily stable against a type τ ∈ Θ if there exists an ε̄ > 0 such that

Πθ(x
∗, y∗, ε) > Πτ (x

∗, y∗, ε) in all BNE (x∗, y∗) in all states s = (θ, τ, ε) with ε ∈
(0, ε̄). A type θ is then evolutionarily stable if it is evolutionarily stable against

all types τ 6= θ in Θ. Evolutionary stability is a static equilibrium concept: the

model focuses on Bayesian Nash equilibrium play during the whole lifetime of one

given “generation” where a share ε of mutants is present in the population, and

stability is checked by analyzing the case where ε tends to 0. Although there is

time in the model, an individual’s fitness is determined by aggregating over the

consumption payoffs obtained over the totality of periods for which the interaction

lasts, i.e. evolutionary success does not fluctuate over the course of the interaction.

Evolution is thus occurring over a longer timescale than that of trade, consistent with

the literature on “indirect” preference evolution with unobservable types.8

Let BNE(s) ⊆ X2 denote the set of Bayesian Nash equilibria in population state

s = (θ, τ, ε)—i.e. all solutions (x∗, y∗) of (6). Given types θ and τ , Alger and Weibull

(2013) define an equilibrium correspondence BNE(θ, τ, ·) : [0, 1) ⇒ X2 that maps a

mutant population share ε to its associated set of equilibria. Moreover, for each type

θ ∈ Θ, they let βθ : X ⇒ X denote the best-reply correspondence,

βθ(y) = arg max
x∈X

uθ(x, y) ∀y ∈ X,

and Xθ ⊆ X the set of fixed points under βθ,

Xθ = {x ∈ X : x ∈ βθ(x)}.

Given θ ∈ Θ, Θθ is then the set of types τ that, when they constitute a small mutation

amongst a population of resident type-θ individuals, play the same way as (and are

8Whilst the timescale of trade may be infinite in E , the standard hazard-rate interpretation of
the discount factor in that case will guarantee that each matched trading session concludes in finite
time.
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hence behaviorally indistinguishable from) those residents:

Θθ = {τ ∈ Θ : ∃x ∈ Xθ such that (x, x) ∈ BNE(θ, τ, 0)}.

In the traditional case of uniform random matching, Pr[τ |θ, ε] = Pr[τ |τ, ε] = ε for

all ε ∈ (0, 1). Following Bergstrom (2003), Alger and Weibull (2013) allow a more

general interaction technology, under which assortative matching is possible. Given

θ, τ ∈ Θ, s = (θ, τ, ε), ε ∈ (0, 1),

φ(ε) = Pr[θ|θ, ε]− Pr[θ|τ, ε],

lim
ε→0

φ(ε) = σ,

φ(0) = σ

defines the assortment function φ : [0, 1) → [−1, 1], which is assumed to be con-

tinuous, and to converge as ε → 0 to the matching process’s index of assortativity

σ ∈ [0, 1]. For uniform random matching, σ = 0 since φ(ε) = 0 for all ε ∈ (0, 1).

Alger and Weibull argue that “uniform random matching is unrealistic for most hu-

man interactions since it requires that there be zero correlation between the contact

pattern that determines how mutations spread in society and the contact pattern

that determines who interacts with whom” (2013, p. 2286).

By contrast, there are many natural reasons to expect a positive correlation be-

tween such patterns, most notably homophily—the tendency of people to interact

more with those who are similar to themselves along one or more dimensions (e.g.

location, language, culture, profession). There is by now a large literature in soci-

ology and economics on this phenomenon, discussed by Alger and Weibull (2013,

§5.2), who also offer a simple model of homophily with unobservable preferences that

yields assortativity in the matching process. Moreover, Alger, Weibull, and Lehmann

(forthcoming) show that such positive assortativity is generic in a population where

individuals stay in the community in which they were born with positive probability.

Specifically in the context of money, there is of course a vibrant literature on search

as the basis for money’s value (see, e.g., Lagos, Rocheteau, and Wright 2017), and in

particular criticism of random matching (Howitt 2005; Prescott 2005) over something

more assortative.

An individual is a κ-homo moralis (Alger and Weibull 2013) if his utility function
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is of the form

uκ(x, y) = (1− κ) · π(x, y) + κ · π(x, x)

for some κ ∈ [0, 1], his degree of morality. If κ = 0, we have the usual case of “pure

selfishness”, which Alger and Weibull term homo oeconomicus. A type θ belonging to

the unit interval will henceforth refer to homo moralis with that degree of morality.

Proposition 1 If each agent i is a κi-homo moralis with κi ∈ (0, 1], then a BNE of

G implements a maximal competitive equilibrium of E .

Proof. With both agents being of the same type κi ∈ Θ, and hence using the same

strategy x,

arg max
z∈X

Pr[θ|θ, ε] · uκi(z, x) + Pr[τ |θ, ε] · uκi(z, x)

= arg max
z∈X

uκi(z, x)

= arg max
z∈X

((1− κi) · π(z, x) + κi · π(z, z))

= arg max
z∈X

((1− κi) · V (z, p̂(x)) + κi · V (z, p̂(z))) , (7)

The strategy x solves (7) if and only if (x(A), x(B), p̂(x)) is a maximal competitive

equilibrium of E , from which the result follows. The second term of (7) is crucial for

this, as it requires that the solution set a market-clearing price that maximizes the

resultant expected discounted payoffs across the two possible agent roles.

Thus, only a small degree of Kantian motivations is required for selection of a max-

imal competitive equilibrium of E . Whilst the degree of morality κi is left free in

Proposition 1, Theorem 1 of Alger and Weibull (2013) establishes that setting it

equal to the index of assortativity σ yields evolutionary stability, as the following

result captures.

Corollary 1 If σ > 0 and βσ(x) is a singleton for all x ∈ Xσ, then σ-homo moralis

is evolutionarily stable against all τ /∈ Θσ, and implements a maximal competitive

equilibrium.

Whilst the evolutionary stability of σ-homo moralis here is unsurprising in light of

Alger and Weibull (2013), its implementation of a maximal competitive equilibrium

is more so. In particular, this differs sharply from Alger and Weibull’s prediction
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that the efficient equilibrium of ordinary coordination games is unique only if σ is

large enough: In such games, an inefficient equilibrium exists for low enough values

of σ because the individual then attaches weight to the payoff she would forgo by not

coordinating with the opponent’s play. By contrast, in the exchange-economy setting

of this paper, any given individual is a price-taker, and hence forgoes no payoff by

deviating from a nonmonetary equilibrium to a strategy whose universal adoption

would enable trade. An agent with homo oeconomicus preferences, for instance,

would be indifferent to deviating to such a strategy, and hence an infinitesimal value

of σ is sufficient to make a σ-homo moralis strictly prefer the deviating strategy.

What does this tell us about the stable utility functions, beyond their inclusion of

σ-homo moralis? The MIU approach to monetary economics of course has the utility

function depend directly on money. Under an appropriate choice of this function,

such an individual will belong to Θσ; hence, if a maximal competitive equilibrium

of E requires agents to demand non-zero holdings of money, there must be stable

utility functions that depend positively on those money holdings in the manner of

the MIU approach. Whilst a range of utility functions may thus theoretically be

stable, a recent paper by van Leeuwen, Alger, and Weibull (2019) begins the task of

estimating the social preferences that emerge under preference evolution.

Example In Sargent’s (1987, §6.6) example from the previous section, βσ(x) is

a singleton for σ-homo moralis for the unique x ∈ Xσ and σ > 0, giving the maximal

monetary equilibrium choice. Hence, by Corollary 1, σ-homo moralis is evolution-

arily stable against all types τ /∈ Θσ, and moreover it implements the monetary

equilibrium.

It is natural to wonder if we can go further and destabilize homo oeconomicus,

but this does not seem immediately possible. Alger and Weibull’s Corollary 2 pro-

vides sufficient conditions for a type’s evolutionary instability, but to invoke it we

would need homo oeconomicus to have a unique resident strategy; since it can sus-

tain multiple equilibria, this cannot be the case. However, a population of individuals

programmed to play just the nonmonetary equilibrium would certainly be unstable

by Alger and Weibull’s Corollary 2. Thus, whilst the survival of homo oeconomicus

cannot be ruled out, it is inconsistent with the play of just the nonmonetary equilib-

rium. Moreover, the presence of homo moralis is sufficient to give money value, and

hence to select the monetary equilibrium.
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A related idea found in the existing literature is that fiat money is given its

value by a small subset of agents, specifically the government, who accept fiat money

and hence coordinate play on a monetary equilibrium (e.g. Obstfeld and Rogoff 1983;

Ritter 1995; Aiyagari and Wallace 1997; Li and Wright 1998). But whilst the behavior

of these agents is an assumption in such papers, here I have shown it to be a natural

evolutionary consequence of assortative matching, and not confined to governmental

actors.
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