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1 Spacetime structure

1.1 Pre-relativistic spacetimes

References:

• J. Earman (1989), chapter 2. (Thorough, but beware of the differential ge-
ometry; you can get a pretty good account of what’s going on by reading the
comprehensible bits and skipping maths that you don’t understand.)

• R. Geroch (1978). Part A: The space-time viewpoint. (Less comprehensive
and more long-winded, but more accessible than Earman.)

1. Every man and his dog is familiar with the point that special relativity
changes our notions of space and time, and that one can try to ask ques-
tions, like ‘do the London–Oxford and the Oxford–London buses leave at
the same time’, that are ‘meaningless’ (suffer from presupposition failure)
in the context of special relativity. Further, that the reason this happens
is that special relativity attributes less structure to space-time than do
pre-relativistic theories.

2. Less familiar is the point that pre-relativistic theories disagree radically
among themselves about what structure spacetime has. It is helpful to
precede our study of spacetime structure in SR with clarity concerning the
range of pre-relativistic options. One can identify ‘Machian’, ‘Leibnizian’,
‘Maxwellian’, ‘Galilean’, ‘Newtonian’ and ‘Aristotelian’ spacetimes, each
equipped with strictly more structure than the previous.

Earman’s chapter goes through this in detail. Here’s a summary; make
sure you’re able to answer the ‘quiz’ at the end of Earman’s chapter.
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Spacetime New structure New invariant no-
tions (e.g.)

Machian
spacetime

Simultaneity; Spatial metric
on each simultaneity slice

Simultaneity; Instanta-
neous distance

Leibnizean
spacetime

Temporal metric Relative velocity; Rela-
tive rotation

Maxwellian
spacetime

Standard of rotation Absolute rotation

Galilean
spacetime

Standard of ‘straightness’ of
worldlines

Absolute acceleration

Newtonian
spacetime

Standard of absolute rest Absolute velocity

Aristotelian
spacetime

Privileged spatial location Distance from centre of
universe

We can’t see spacetime structure directly. It is worth asking: What, then,
is the right methodology for working out which spacetime structure we ought
to believe in?

The usual answer to this question is: one should believe in just the amount
of spacetime structure that is needed in order invariantly to make sense of the
distinctions that are required by one’s best physics. (For instance, insofar as one
believes Newtonian physics, one should believe in Galilean — not Newtonian —
spacetime. This is because the usual equations of Newtonian mechanics are valid
only in inertial frames, so we do require the ‘affine structure’ that distinguishes
inertial from non-inertial worldlines; Newtonian mechanics does not, however,
make any use of the notion of absolute velocity.)

1.2 Minkowski spacetime

Reference:

• T. Maudlin (2006). (Elementary — accessible to readers who have not studied
SR as part of a physics course.)

1. Special relativity adds another line to the above table. The difference is
that we are no longer merely adding to, or subtracting from, the structure
of a previous spacetime. We are throwing out (almost) all pre-relativistic
structures, including the spatial metrics that are present in all the above
spacetimes and the temporal metric that is present in all but Machian
spacetime, and replacing them with the single piece of structure required
by SR — the Minkowski metric.

Spacetime Structure Invariant notion
Minkowski
spacetime

Minkowski metric Spatiotemporal interval
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2. The Minkowski spacetime interval between two events a, b is given (in
Lorentz coordinates) by the expression

d(a, b) =
√

(∆t(a, b)2 −∆x(a, b)2 −∆y(a, b)2 −∆z(a, b)2), (1)

where ∆t(a, b) := t(a)− t(b), and mutatis mutandis for ∆x,∆y,∆z.

3. Minkowski diagrams

• A Minkowski diagram usually suppresses two of the spatial dimen-
sions. The vertical axis is the ‘t’-axis, the horizontal axis the ‘x’-axis,
for some Lorentz coordinate system.

• For most physical phenomena (e.g. the worldline of a particular par-
ticle), exactly how that phenomenon looks on a Minkowski diagram
depends on which Lorentz chart we singled out to draw the axes. But
some structures are invariant, i.e. look the same regardless of which
Lorentz chart the diagram is drawn with respect to. These invari-
ant structures include the loci of points that are a given Minkowski
distance d from a given point p of the spacetime.

4. Hyperboloids

• In a Euclidean space, the set of points at a fixed distance from a
given point forms a sphere. ((x− x0)2 + (y − y0)2 + (z − z0)2 = r2,
for some constants r, x0, y0, z0 ∈ R.)

• The set of points a fixed Minkowski distance from a given point forms
an hyperboloid :

∆t(a, b)2 −∆x(a, b)2 −∆y(a, b)2 −∆z(a, b)2 = b, (2)

for some constant b ∈ R.

• What this set of points looks like on a Minkowski diagram depends
on whether the constant b is positive, negative or zero.

5. ‘Imaginary’ Minkowski distance (b < 0)

• The set of points at a given negative spatiotemporal squared-distance
from a given point p forms an ‘hyperboloid of two sheets’ (see figure
1).

• We say that such points are timelike separated from the selected point
p.

• The worldlines of ordinary1 massive particles are everywhere timelike
(i.e. each point on a given worldline is timelike separated from all
other points on the same worldline).

1The caveat ‘ordinary’ is a nod to the consistency of the existence of ‘tachyons’ with special
relativity.
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Figure 1: Loci of points a constant negative spatiotemporal distance-squared
from a fixed point p.

6. ‘Real’ Minkowski distance (b > 0)

• The set of points at a given positive spatiotemporal squared-distance
from a given point forms an ‘hyperboloid of one sheet’ (see figure 2).

• These points are said to be spacelike separated from p.

7. Zero distance (‘b=0’)

• The set of points at zero spatiotemporal distance from a given point
forms a double cone (a degenerate hyperboloid; see figure 3).

• The points on the cone are said to be lightlike separated from p. They
can just be connected to p by means of a light ray, but cannot be
connected by the wordline of any massive particle.

2 Standard vs generally covariant formulations
of a physical theory

2.1 Introduction

1. We are accustomed (from school and high school physics) to the idea that
the equations of one’s physical theory are true only in a privileged class
of coordinate systems (usually, the ‘inertial’ systems).

It is, however, also possible to formulate a physical theory in such a way
that its equations are true in an arbitrary coordinate system.
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Figure 2: Loci of points a constant positive spatiotemporal squared-distance
from a fixed point p.
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Figure 3: The locus of points zero spatiotemporal squared-distance from a fixed
point p.

It will greatly illuminate our understanding of several conceptual issues in
the foundations of special relativity (including the ongoing disputes over
the conventionality of simultaneity, and over the independent reality of
Minkowski geometry) if we understand how this can be done.

For example:

2. Earlier, we encountered the following quote:

[Newton’s first law] reads in detailed formulation necessarily as
follows: Matter points that are sufficiently separated from each
other move uniformly in a straight line — provided that the
motion is related to a suitably moving coordinate system and
the time is suitably defined. Who does not feel the painfulness
of such a formulation? (Einstein, 1920)

3. And we tried to talk ourselves out of pain by observing that the existence
of an inertial frame is nontrivial. But there are two reasons one might
consider a law like Newton’s First painful:

• Worries about circularity (and hence lack of empirical content);

• A sense of ‘massive cosmic conspiracy’.

Our observation at best removes the first of these pain-sources. We still
have a sense of mysterious conspiracy; we lack (that is) any explanation
of why some coordinate systems are ‘better’ than others.
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4. From this point of view, the point of formulating a theory in a generally-
covariant manner is that

(a) in a generally covariant formulation, by definition, no coordinate sys-
tem is better than any other, so the above puzzle does not arise;

(b) it is in understanding the relationship between the generally covariant
formulation and the ‘standard formulation’ of a given theory that one
comes to understand why some coordinate systems are ‘special’ (i.e.
we solve the puzzle) in the context of the latter;

(c) roughly, the explanation is that (as in the above analogy) there is
more real structure to the world than is explicitly represented in the
standard formulation. The generally covariant formulation explicitly
represents all structure required to render the theory non-mysterious
(this is how it manages to be generally covariant — coordinates now
really are just arbitrary labels).

2.2 Spacetime structure and three styles of theory-formulation

Reference:

• J. Norton, ‘Philosophy of space and time’, in Merrillee H. Salmon (ed.), In-
troduction to the philosophy of science, Hackett (1999). Sections 5.4–5.7.
(Available for download from http://www.pitt.edu/ jdnorton/homepage/cv.html.)

As a simple example to illustrate the issues, consider first a very sparse
physical theory: we are simply modelling the temporal continuum (which we
will call T ).

1. The standard formulation2

(a) We use a coordinate system: a mapping t : T → R from our temporal
continuum T to the real numbers.

(b) The point of this coordinate system is to encode certain physical facts
about the temporal continuum T. For example:

i. There is a physical fact about the temporal distance ∆T (a, b)
between instants a and b.

ii. This fact is represented in our coordinate system via the coordinate-
dependent expression ∆T (a, b) = |t(b)− t(a)|.

iii. There is a physical fact (let us suppose) about which of any two
distinct instants a, b is later than the other.

iv. This fact is represented in our coordinate system via which of
t(a), t(b) is the greater number.

2Norton breaks this section of the discussion into two parts, introducing a ‘one coordinate
system formulation’ before moving on to the ‘standard formulation’. What appears in these
notes is a significantly condensed version of Norton’s discussion.
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(c) But if our original coordinate system t : T → R is a ‘good coordinate
system’ in the sense that the facts about temporal distances and
later-than relations can be recovered from the coordinates in this
way, then so also is any other coordinate system t′ that is related to
t by a ‘constant shift’, i.e. any t′ such that for some k ∈ R, we have

∀a ∈ T, t′(a) = t(a) + k. (3)

(d) So the ‘standard formulation’ of our theory has two components:
(i) formulae for recovering physical facts from coordinate-dependent
expressions in the ‘good’ coordinate systems, and (ii) the formulae
that relate one ‘good’ coordinate system to another.

2. The generally covariant formulation

(a) So far, we have been implicitly representing the facts about temporal
differences, by stipulating (i) how temporal distance is to be recovered
from coordinates and (ii) which coordinate systems are allowed.

(b) In a generally covariant formulation, we represent the physical facts
explicitly, by means of additional fields. This gives us the freedom to
use any coordinate system.

(c) It is clear that, if we are allowing arbitrary coordinate systems, we
can no longer rely on the coordinate difference t(a)−t(b) to represent
the temporal distance between the events a and b.

(d) What we can do instead: Introduce a ‘scale factor’, w : T → R.

• Simple example: a linearly stretched coordinate system
– Suppose that t : T → R is a standard coordinate system.
– Let t′ : T → R be an alternative coordinate system, related

to t by
∀a ∈ T, t′(a) = 2t(a). (4)

– Then, if a, b are events such that t(a) = 1000 and t(b) = 1001,
we have t′(a) = 2000, t′(b) = 2002; so ∆t(a, b) ≡ t(b)−t(a) =
1, and ∆t′(a, b) ≡ t′(b)− t′(a) = 2.

– Key aspect of this: ∆t(a, b) = 1
2∆t′(a, b). So, we need to

multiply the coordinate difference ∆t′ by the scale factor 1
2 ,

in order to recover temporal distances from our ‘stretched’
coordinate system.

– For this coordinate system t′, the scale factor w′ = 1
2 .

• General case: an arbitrarily stretched and squeezed coordinate
system
– Let t′′ : T → R be an arbitrary coordinate system for the

temporal continuum T .
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– The ‘scale factor’ w′′ for the coordinate system t′′ is given by

w′′ =
dt

dt′′
w (5)

(at every point).
– We then recover temporal distances from a combination of

the coordinate system and scale factor as follows:

∆T (a, b) =
∫ b

a

dt′′w′′. (6)

– It is easy to see that this expression for ∆T will give the
same answer as our original expression t(b) − t(a) in terms
of standard coordinates.

3. How we can now answer the puzzle previously raised

(a) We started with a standard formulation of our theory of linear time.
In this formulation, some coordinate systems were preferred to others.
Something real had to be conceived as the cause for this preference of
some coordinate systems over others. That something is the temporal
metric. In the generally covariant formulation of the theory, the
temporal metric is represented explicitly, by means of the new field
w. It is because the standard formulation does not explicitly mention
w that it can truly describe the coordinate-independent facts only
relative to special coordinate systems (viz., coordinate systems in
which w happens to take the value 1 everywhere).

4. Aside (advanced): coordinate-generality vs coordinate-independence

(a) Our above (‘generally covariant’) formulation of the theory is coordinate-
general : it allows us to construct a representation of the physical facts
using any coordinate system.

(b) This is distinct from a coordinate-independent formulation. A coordinate-
independent formulation would allow us to represent the physical
facts using no coordinate system.

(c) It is possible to formulate theories in a coordinate-independent way.
(Indeed, once the relevant mathematics is mastered, the coordinate-
independent formulation is a trivial rewriting of the coordinate-general
version.)

(d) In a coordinate-independent formulation, we would describe the in-
trinsic nature of the background structures and dynamical fields and
the relations they bear to one another, without having to say ‘and
this is how those facts are represented in such-and-such a coordinate
system’. This formulation has the advantage of enabling us to see why
the coordinate components of vectors, one-forms etc each transform
in their characteristic ways under changes of coordinate system.
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• Example 1 (vectors in a 3D space): By understanding that a
given triple of numbers represents an arrow in spacetime, as op-
posed to (say) a set of three scalar fields, we are able to predict
how it will transform under rotations of our coordinate system.

(e) This coordinate-independent approach greatly illuminates the posi-
tion of realism about spacetime structure, and the reasons why its
advocates find it so compelling. Unfortunately, a full understanding
of it this requires the mathematical machinery of differential geome-
try, which we don’t expect you to have studied.
• The above ‘scale factor’ is, in the language of differential geom-

etry, a one-form.
(f) For those interested (and willing to battle with the maths!), the locus

classicus of the spacetime-structure-realist approach is (Friedman,
1983). Another classic discussion in the same spirit is (Earman,
1989); see especially chapters 2 and 3.

2.3 Generalising the lessons: other structures

In our first example, we considered a one-dimensional ‘space’ (viz. time), and
we supposed there were facts about which of any two intervals was the larger,
and which of any two points (instants) was the later.

We consider now a variety of other spaces (including spacetimes) that have
played a role in physics. The aim in each case will be (i) to review the standard
formulation, with which you will already be familiar, and then (ii) to see how we
can express the same space-theory in a generally covariant way. In each case, we
will find that we can move to a generally covariant formulation by introducing
extra fields — fields representing the space(-time) structure that the standard
formulation treats as ‘background’.

1. Euclidean 3-space

(a) In a Euclidean 3-space S, there is a fact, for any pair of points, about
how far apart those two points are.

(b) The standard formulation
• Represent space S via a coordinate system (x, y, z) : S → R3.
• Recover distance facts as follows: For any two points a, b of the

3-space, the distance d(a, b) between a and b is given by

d(a, b) =
(
(x(a)− x(b))2 + (y(a)− y(b))2 + (z(a)− z(b))2

) 1
2 .
(7)

• Any coordinate system that is related to our first by a transfor-
mation of the form

x′ = Rx + a, (8)

where R is an orthogonal 3 × 3 matrix and a ∈ R3, is just as
legitimate a way of representing the physical facts as is our first
coordinate system.
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(c) The generally covariant formulation

• To formulate a Euclidean-space theory generally covariantly, we
need a mathematical object that is capable of representing the
Euclidean spatial metric.

• A ‘tensor field of type (0,2)’ — a three-by-three matrix field on
our 3D space, transforming in a certain way under coordinate
transformations — fits the bill.

• In the ‘Cartesian’ coordinate systems of our standard formula-
tion, the value of this field is everywhere the identity matrix (i.e.
‘ones’ on the diagonal, ‘zeros’ elsewhere).
– In other coordinate systems, it is a different symmetric 3× 3

matrix.
– The general transformation law for γµν is given by

γ′µν = γαβ
∂xα

∂x′µ
∂xβ

∂x′ν
. (9)

• Distances are recovered from this object γ via the formula

l =
∫ √

γµνdxµdxν , (10)

in any coordinate system.
• (An exercise (straightforward), to make sure you see what’s going

on here: Check that if you transform γ using the rule (9) when
going from a Cartesian to a spherical polar coordinate system,
the value of the quantity γµνdx

µdxν (implicitly summing over
repeated indices) is the same, for a fixed pair of ‘infinitesimally
separated’ points, before and after the coordinate transforma-
tion.)

2. Newtonian spacetime

(a) In Newtonian spacetime N , there is a fact, for any pair of points,
about their spatial distance, and another fact about the temporal
displacement of the second from the first.

(b) The standard formulation

• Represent spacetime via a coordinate system (t, x, y, z) : N →
R4.

• Recover spatial distance facts as follows: For any two points a, b
of the spacetime N , the spatial distance between a and b is given
by

Ds(a, b) =
√

(x(a)− x(b))2 + (y(a)− y(b))2 + (z(a)− z(b))2.
(11)
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• Recover temporal distance facts as follows: For any two points
a, b of the spacetime N , the temporal displacement Dt(a, b) of b
from a is given by

Dt(a, b) = t(b)− t(a). (12)

• The privileged coordinate systems are related to one another by
transformations of the form

t′ = t+ α
x′ = x′ = Rx + a, (13)

where α ∈ R, and R,a are as above.

3. Galilean spacetime

(a) In Galilean spacetime, for any pair of points, there is a fact about
their temporal distance. There is no fact about their spatial distance,
unless their temporal distance happens to be zero. There is, however,
a fact, for any line in the spacetime, about whether or not that line
is straight. (If a line is straight and some of its points are at nonzero
temporal distance from one another, we call it an inertial trajectory.)

(b) The standard formulation
• As in the Newtonian case: Represent Galilean spacetime G via

a coordinate system (t, x, y, z) : M → R4.
• Recover temporal displacement facts from coordinates exactly as

in the Newtonian case.
• The spatial distance between two points a, b that are such that

∆t(a, b) = 0 is given by the same formula as in the Newtonian
case.

• A line in M is straight (i.e. inertial, for lines that do not lie in a
single simultaneity slice) iff its image in R4 under our coordinate
mapping is straight in the usual sense in R4.

• The privileged coordinate systems are related to one another by
transformations of the form

t′ = t+ α
x′ = x′ = Rx + a− vt, (14)

where v ∈ R3, and other transformation parameters are as above.

4. Generally covariant formulations of Newtonian and Galilean spacetime

• It is relatively complicated, mathematically, to formulate Newtonian
and Galilean spacetimes in a generally covariant way. But it can
be done, and involves no conceptual departure from what we have
already done for linear time and Euclidean space. Those interested
in the details (and able and willing to conquer the maths, i.e. basic
concepts of differential geometry) can look them up in e.g. (Earman,
1989).
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5. Minkowski spacetime

(a) We have already seen the standard formulation of the theory of
Minkowski spacetime: spacetime intervals are recovered from privi-
leged (i.e. Lorentz) coordinate systems via the expression

d(a, b) =
√

(∆t(a, b)2 −∆x(a, b)2 −∆y(a, b)2 −∆z(a, b)2), (15)

and the privileged coordinate systems are related to one another by
Lorentz transformations.

(b) The generally covariant formulation

• Just as we represented the Euclidean spatial metric using a 3×3
matrix field (γab) on a three-dimensional space, so we can repre-
sent the Minkowski spacetime metric using a 4× 4 matrix field,
usually written ηab, on a four-dimensional space(-time).

• In the privileged (i.e. Lorentz) coordinate systems, η takes the
special form

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (16)

at all points of spacetime.
In other coordinate systems, η is represented via some other sym-
metric matrix. (Cf. the analogous points for Euclidean space.)

• In any coordinate system, we can recover the ‘Minkowski length’
of a curve via an integral along that curve:

d(a, b) =
∫ b

a

√
ηµνdxµdxν . (17)

6. Special-relativistic dynamical theories

(a) Above, we merely looked at the theory of Minkowski spacetime itself.
What we are really interested in are dynamical theories (e.g., elec-
tromagnetism) that we might formulate in the setting of Minkowski
spacetime. Each of these dynamical theories, too, can be formulated
in the standard and in the generally covariant way.

(b) Standard formulation of a special-relativistic dynamical theory

• Example 1: Law of inertia. As before, this takes the form

ẍ = 0 (18)

(valid only in preferred coordinate systems).

13



• Example 2: Maxwell’s equations. In the standard formulation,
these take the familiar form

∂Fµν
∂xν

= Jµ; (19)

∂Fµν
∂xσ

+
∂Fνσ
∂xµ

+
∂Fσµ
∂xν

= 0. (20)

(again, valid only in the preferred coordinate systems).
• If we ‘accept special relativity’ we require dynamical laws to be

Lorentz covariant : that is, we require that, if some configura-
tion of fields and particle trajectories to spacetime satisfies our
equations relative to one preferred coordinate system (‘inertial
frame’), then the same configuration satisfies the same equa-
tions relative to all preferred coordinate systems. (This is what
we meant, above, by the requirement that ‘none of the preferred
[i.e. Lorentz-transform-related] coordinate systems is better than
any other’.)
– The laws in both of the above examples meet this require-

ment.
– This requirement is the physical content of special relativity,

in standard formulation.

(c) Generally covariant formulation of a special-relativistic dynamical
theory

i. For the generally covariant formulation of a special-relativistic
dynamical theory, we write down equations coupling our theory’s
dynamical fields not only to each other, but also to ηab.
• Generally covariant form of the ;aw of inertia:

d2xµ

dλ2
+ Γµνσ

dxν

dλ

dxσ

dλ
= 0. (21)

• Generally covariant form of Maxwell’s equations:

Fµν;ν ≡ ∂Fµν
∂xν

− ΓλµνFλν − ΓλννFµλ (22)

= Jµ; (23)

F[µν;σ] ≡
1
3

(
∂Fµν
∂xσ

− ΓλµσFλν − ΓλνσFµλ (24)

+
∂Fνσ
∂xµ

− ΓλνµFλσ − ΓλσµFνλ (25)

+
∂Fσµ
∂xν

− ΓλσνFλµ − ΓλµνFσλ) (26)

= 0. (27)

• (Here, in each case, Γ is the ‘Christoffel symbol’, which is a
fixed function of the matrix field ηab.)
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ii. These equations are generally covariant: i.e. if some configura-
tion of fields on and particle trajectories in spacetime satisfies the
equations relative to one coordinate system, it follows that that
configuration satisfies the same equations relative to an arbitrary
coordinate system. (The transformation law for the quantities Γ
is such as to make this true.)

(d) The relationship between the two formulations

i. The Minkowski tensor field ηab is unusually simple, as physical
fields go. This is reflected in the fact that there are coordinate
systems in which (i) it takes a very simple value, the diagonal
matrix diag(−1, 1, 1, 1), and (ii) it takes that same simple value
at every point of spacetime. (Contrast: the Maxwell-Faraday
tensor Fab, in an arbitrary solution to Maxwell’s equations, is in
general a relatively complicated matrix at any given spacetime
point, and also varies from one point of spacetime to another.)

ii. This invites us to work only in the privileged coordinate systems
in which the coordinate components of ηab are always 0 or ±1
and the Christoffel symbols Γ are all zero, and to suppress explicit
mention of η and Γ, replacing such expressions as η03 with the
numbers that are the values of components of η in our chosen
coordinate system.

iii. The resulting set of equations is the standard formulation of the
theory.
• But we now understand why the ‘privileged’ coordinate sys-

tems are privileged: Lorentz coordinate systems are priv-
ileged because we have written e.g. ‘-1’ in place of ‘η00’ in
our dynamical equations, and it is only in Lorentz coordinate
systems that those two quantities are equal.

2.4 ‘Interpretations’ of special relativity

1. What is special relativity? Some candidate answers:

(a) Special relativity as a principle theory

i. ‘Special relativity consists of the Relativity Principle, the Light
Postulate, whatever supplementary principles are needed to de-
rive the Lorentz transformations therefrom, and the said deriva-
tion of the Lorentz transformations.’

(b) Special relativity as a statement about transformations between priv-
ileged coordinate systems

i. ‘Special relativity is the statement that the laws of physics (in
standard formulation) are Lorentz covariant.’

(c) Special relativity as a statement about the structure of spacetime
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i. ‘Special relativity is the statement that spacetime structure (over
and above topological and differential structure) is exhausted by
the Minkowski metric.’

2. There is probably no sensible debate about which of these statements is
‘really special relativity’.

(a) E.g. A physicist we would ordinarily describe as ‘accepting special
relativity’ probably believes all three (sets of) statements.

3 Simultaneity: relativity and conventionality

There is an extended (and still ongoing) dispute about the status of the concept
of simultaneity in special relativity: in particular, whether or not special rela-
tivity reveals simultaneity to be a matter of convention, as opposed to physical
fact.

Historically, the arch-conventionalists were Reichenbach (1958) and Grun-
baum (1973). The one-sentence caricature of the history of the discussion is that
prior to 1977, conventionalism was generally accepted, and that in 1977 the tide
was turned when David Malament proved a theorem supposed to drive nails
into the conventionalists’ coffin. As usual, however, the one-sentence caricature
is an oversimplification. There is a current anti-conventionalist consensus, but
it is far from universal.

3.1 Preamble 1: Simultaneity in pre-relativistic physics

1. Before the advent of relativity theory, it was assumed without question
that there was a matter of fact about which events are simultaneous with
which others.

2. Theorising about the nature of the simultaneity relation often connected
simultaneity with causation.

3. Kant:

(a) An event A is prior to event B iff A is a cause of B and B is not a
cause of A.

(b) Two events A, B are simultaneous iff neither is prior to the other,
i.e. iff either

i. Neither is a cause of the other (the ’negative causal criterion’),
or

ii. A is a cause of B and B is a cause of A (the ’positive causal
criterion’).

4. In prerelativistic physics, we are supposed to allow causal influences to
travel with any speed (perhaps including infinite speed). Then, according
to Kant’s definitions, simultaneity is an equivalence relation on the class
of events.
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5. Special relativity and Kantian simultaneity

(a) Given special relativity, if we hold onto Kant’s definitions and we
read ’is a cause of’ as ’is in or on the past lightcone of’, any two
spacelike separated events count as simultaneous with one another
(by the negative causal criterion).

i. This is the notion that Reichenbach and Grunbaum call ‘topo-
logical simultaneity’.

ii. Simultaneity, thus defined, is not a transitive relation (hence, not
an equivalence relation).

iii. This means that it cannot correspond to the relation of member-
ship of the same constant-t hypersurface of any global coordinate
function.

iv. This notion of ’simultaneity’ is sufficiently unlike our pre-relativistic
idea that we are motivated to look for better deservers of the
name.

3.2 The standard (‘Einstein-Poincare’) account of simul-
taneity in special relativity

1. Einstein defined simultaneity in an inertial frame F in terms of light sig-
nals.

2. Einstein-Poincare synchrony: Let OA, OB be inertial worldlines that are
stationary in F. Let A1, A3 be events on OA, and let B2 be an event on
OB .

Let a light signal leave OA at the event A1, reaching OB at the event B2;
let the signal then be reflected immediately back to OA, arriving at the
event A3. Say that the clocks tA, tB are Einstein-synchronous relative to
the frame F iff

tB(B2)− tA(A1) =
1
2

(tA(A3)− tA(A1)) (28)

(intuitively: iff according to that pair of clocks, the light signal takes the
same time to travel from OA to OB as it requires for its return from OB
to OA).

• Note well that statements about one-way speeds presuppose a standard
of simultaneity.

3. Einstein-Poincare synchrony is frame-relative: events that are Einstein-
synchronous relative to one frame F will not in general be Einstein-
synchronous relative to a different frame F ′. (See figure 3.)
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Figure 4: Einstein-Poincare synchrony. The horizontal line is the locus of points
that are Einstein-Poincare simultaneous with AEP2 relative to the rest frame of
the observer OA.

Figure 5: Einstein-Poincare synchrony relative to a ‘moving’ frame. Note that
the locus of events that are simultaneous with the event B2 relative to the rest
frame of OC is not the same as the locus of events that are simultaneous with
the same event relative to a different inertial frame (compare the present figure
with figure 4 above).
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3.3 Preamble 2: Fact vs convention

1. One of the most difficult (and also the most important) tasks in the foun-
dations of physics is distinguishing between those aspects of a given theory
that should be taken to represent (or to purport to represent) aspects of
physical reality, and when, on the other hand, a given apparent amend-
ment of theory amounts merely to a change of descriptive convention.

(a) A trivial example at each extreme

• Example 1: Jones formulates classical mechanics using the letter
x to represent a particle’s spatial position. Smith uses r to rep-
resent spatial position, but otherwise her formulation of classical
mechanics is identical to Jones’s.
– Clearly, Jones and Smith do not have rival theories: merely

different notational conventions.
• Example 2: Davies has a theory that predicts that a cannonball

fired horizontally in a uniform gravitational field will describe a
parabolic path. Evans has a theory that predicts that such a
cannonball will traverse a straight-line path.
– Clearly, Davies’ and Evans’ theories disagree over genuine

matters of fact (since they disagree over experimental pre-
dictions).

(b) These trivial examples help to give us an initial handle on what the
distinction we’re after is supposed to be, but they don’t help us with
‘the hard bit’; working out where, or how, we can draw the line in a
principled way between those two extremes.

(c) ‘Conventionalists’ about simultaneity contend that the Einsteinian
account of simultaneity has the status of a convention, rather than
fact, so that one could offer an alternative account of simultaneity
without disagreeing with Einstein on any factual matter.

(d) All parties agree that the Einsteinian definition is more natural than
many of the suggested alternatives.

3.4 Two alternative synchrony schemata

1. Reichenbach’s rule, version 1

(a) We proceed as in Einstein’s definition, but replace the factor of 1
2 in

equation (28) with a parameter ε. ε is then permitted to take any
value in the interval (0, 1).

(b) Example: setting ε = 1
4 has the consequence of ‘tilting’ the lines of

simultaneity between the worldlines OA and OB , as in figure 1b.

(c) Torretti: this is not an ‘inertial timescale’ (Torretti, 1996, p. 225)
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Figure 6:

i. Torretti’s point: Suppose we synchronized a clock on OA, not
only with clocks to the right of OA, but also with clocks to the left
of OA (see figure 7), using the same (e.g. the ε = 1

4 ) synchrony
rule. Then, just as the synchrony surface to the right of OA was
‘uphill heading away from OA’, so also will be the synchrony
surface to the left of OA. This means that the simultaneity
surfaces are not flat. A result of that is that no time coordinate
respecting this sort of synchrony relation can make it true that
all inertial worldlines count as traversing equal distances in equal
times, i.e. no such time coordinate can be an ‘inertial timescale’
in Torretti’s (1996, p. 17) terminology. (See figure 8.)

2. Reichenbach’s rule, version 2 (Torretti, 1996, pp.225-6)

• The Reichenbach-1 synchrony scheme resulted in a non-inertial timescale
because we used the same non- 1

2 value of ε for every spatial direction.

• The idea of the Reichenbach-2 scheme is to retain the feature ε 6= 1
2 ,

but nevertheless to end up with an intertial timescale, by allowing ε
to vary with spatial direction.

• The scheme:

– For each frame F , choose a direction rFmax and a value εFmax ∈
(0, 1).

– For events that are a positive distance from OA in the spatial
direction rmax, apply the Reichenbach-1-(εmax) scheme as above.
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Figure 7: The surfaces of simultaneity given by the Reichenbach-1 synchrony
scheme, with values of ε other than 1

2 , are not flat planes — they are hypercones,
with apex on the worldline OA relative to which the synchrony scheme has been
applied.

Figure 8: Relative to the Reichenbach-1-(1/4) synchrony scheme, the distance
travelled by the free particle P during a fixed time interval It is smaller when it
is on the left of the worldline OA than when it is on the right of that worldline.
That is, this synchrony scheme results in a non-inertial timescale.
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Figure 9: Unlike the ‘Reichenbach-1’ synchrony scheme, a Reichenbach-2 scheme
defines an inertial timescale. For a fixed value of εmax, a Reichenbach-2 syn-
chrony scheme is relative to an inertial worldline and spatial direction.

– Extend the simultaneity surfaces to events in other spatial direc-
tions from OA by imposing the requirement that the simultaneity
surfaces be (hyper)planes, i.e. that the resulting timescale be in-
ertial. (See figure 9.)

– The resulting simultaneity relation will be that given by Ein-
stein synchrony for *some* inertial frame, but not necessarily
the frame F whose notion of simultaneity we are defining.

3.5 Synchrony by slow clock transport

1. If the world is in fact (even approximately) special-relativistic, and some
careful definition is involved in setting up a standard of synchrony of a
special-relativistic world, the question is raised of how we have in fact
established (even approximate) standards of synchrony, even for practical
purposes, prior to explicit consideration of these issues.

2. The answer is (usually) clock transport synchrony : we synchronise clocks
at a common spatiotemporal location, then move the clocks apart, and
continue to regard them as telling the same time as one another as they
are moved apart.

3. Special relativity calls the coherence of this practice into question: In
general, two clocks that are synchronised with one another at a common
point of spacetime, are moved spatially away from one another and then

22



reunited, will not agree (according to SR) about the amount of time that
has elapsed since they were synchronised. We therefore cannot regard
them both as ‘telling the right time’ (or: defining the temporal coordinate)
at the point at which they are reunited, on pain of contradiction.

4. However, even in special relativity, in the limit in which the speed of the
clocks (better: the ratio of the speed of the clocks to the speed of light)
tends to zero, their disagreement on being reunited tends to zero also.

5. Since, pre-relativistically, we only ever moved clocks at speeds a very small
fraction of the speed of light, this explains both (a) why we do not notice
the discrepancy in everyday life, and (b) why (slow) clock transport is a
perfectly adequate synchrony scheme for practical purposes.

(a) Aside: Once we know where to look, it does not require immense
technological capability to observe the phenomenon of disagreement
on reunion. (The Pan Am experiment.)

6. It can be shown (Eddington, 1924) that, in the limit v
c → 0, synchrony by

slow clock transport leads to the same standard of simultaneity as does
the Einstein-Poincare convention.

(a) Recall that this standard is frame-relative. This is unsurprising, since
what counts as ‘slow’ clock transport is also frame-relative.

7. A residual worry: What counts as ‘slow’ is not only relative to ‘frame’
in the sense of ‘standard of rest’, but also to standard of synchrony, i.e.
to the very thing that we are trying to define. So isn’t the procedure of
synchrony by slow clock transport viciously circular?

8. Solution to this worry (Bridgman, 1961, p. 65): use the ‘self-measured’
clock speed (i.e. the ratio of (i) distance travelled according to the frame
for which we are setting up a standard of synchrony to (ii) journey time
according to the clock itself.)

(a) The limit ‘self-measured speed tends to zero’ is the same limit as the
(initially undefined) limit ‘speed in the frame in question tends to
zero’.

3.6 A brief history of the debate over the conventionality
of simultaneity, post-Einstein

3.6.1 The original conventionalists: Reichenbach and Grunbaum

1. R and G claim that the only nonconventional basis for claiming that two
distinct events are not simultaneous would be the possibility of a causal
influence connecting the events. Accordingly, they claim that in SR, extra-
convention facts do not suffice to fix the simultaneity relation — an ele-
ment of conventionality is present.
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2. ‘Metrical simultaneity’ (as opposed to ‘topological simultaneity’):

• Recall that, in SR, ‘topological simultaneity’ is not an equivalence
relation. We require metrical simultaneity to be an equivalence rela-
tion.

• We further require the metrical simultaneity relation to have the
feature that if two events are metrically simultaneous, then they are
also topologically simultaneous.

• But this desideratum does not fix the metrical simultaneity relation
uniquely.

• Einstein’s definition provides one way of fixing a metrical simultane-
ity relation. Reichenbach’s and Grunbaum’s point is that (as shown
by the Reichenbach-1 and Reichenbach-2 synchrony schemata out-
lined above) there are also other ways of doing it, consistent with the
only desiderata we have seen so far.

3. Reichenbach’s conventionality argument

• Reichenbach (at the stage of his career that we are currently inter-
ested in) signs up to broadly logical positivist doctrines. The key
for our purposes is the verificationist theory of meaning, according to
which the meaning of a sentence is identified with the conditions of
its verification. This theory of meaning has the consequence that if
‘two’ scientific theories are empirically equivalent (i.e. make all the
same predictions for outcomes of experiments as one another), then
they mean the same thing as one another (in this sense, they are
more properly described as two formulations of ‘the same theory’).
In this case, while we might prefer one formulation to the other if it
offers us a simpler way of describing the facts, there cannot be any
question about which of our theories is more likely to be true. The
choice between such theories is merely a choice of description, i.e. is
a choice of convention.

• Accordingly, the key for Reichenbach is whether or not changing the
simultaneity relation leads to an empirically inequivalent theory; his
key observation is that it does not, and from this he concludes that
simultaneity in special relativity is conventional.

• Summing this up: Reichenbach’s argument seems to be:

P1: Empirical equivalence. Versions of SR that differ only on the
standard of simultaneity are empirically equivalent.

P2: Criterion of conventionality. If two sets of statements are
empirically equivalent, then they agree on all matters of fact,
and the choice between them is a choice of convention.

Conclusion: Conventionality of simultaneity. The choice between
versions of SR that differ only on standard of simultaneity is a
choice of convention.
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4. Grunbaum’s conventionality argument

(a) Grunbaum rejects positivism and the verificationist theory of mean-
ing, and seeks to offer an argument for the conventionality thesis that
does not rely on it.

(b) Grunbaum has a notion of the primitive quantities that exist ac-
cording to the theory. He asserts that these include the topological
structure of spacetime, and the causal structure.

(c) Other quantities (including metrical structure, and simultaneity) are
taken to be factual (as opposed to conventional) iff they are definable
in terms of these primitive quantities.

(d) Grunbaum asserts that no simultaneity relation is definable in terms
of the causal structure. He concludes that simultaneity is conven-
tional.

(e) Summing this up: Grunbaum’s argument seems to be:

P1: Basic quantities. The basic spatiotemporal quantities are the
topology of the spacetime manifold, and the facts about which
pairs of spacetime points are causally connectible.

P2: Criterion of factuality. A spatiotemporal quantity is factual
iff it is definable in terms of the basic quantities; otherwise it is
conventional.

P3: Indefinability of simultaneity. Simultaneity is not definable
in terms of topology and causal-connectibility facts.

Conclusion: Conventionality of simultaneity. Simultaneity is con-
ventional, not factual.

5. Neither Reichenbach’s argument nor Grunbaum’s is a good argument.

• Reichenbach’s (positivist) criterion of conventionality counts too many
things to be choices of convention, not fact. For instance, disagree-
ments about the existence of a being something like the Judeo-Christian-
Muslim God are presumably genuine disagreements, but according to
positivism would be classed as pseudo-disputes (‘mere choices of de-
scriptive convention’).

• It’s unclear what the motivation is for Grunbaum’s notion of conven-
tionality.

• Arguably, Malament’s theorem (below) shows that Grunbaum’s third
premise — his claim about the indefinability of simultaneity — is
false. But this is controversial: look at the theorem and make your
own mind up!

6. But bad arguments can have true conclusions, so simultaneity may yet be
conventional.
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3.6.2 Phenomenological counterarguments to the Reichenbach-Grunbaum
conventionality thesis

1. In response to Reichenbach and Grunbaum’s conventionality thesis, it was
sometimes claimed that simultaneity was empirically accessible (i.e. that
convention-free phenomena together with the laws of physics could estab-
lish the holding of simultaneity relations).

2. If this claim was true, it would show simultaneity to be non-conventional
by both Reichenbach’s lights and Grunbaum’s.

• The claim isn’t true. But it’s worth considering, if only because
significant physical insight can be gained by identifying where each
of the arguments for it fails.

3. Arguments for the claim that versions of SR that disagree only on simul-
taneity relation are empirically inequivalent

(a) Argument from the measurability of the one-way speed of light
• The speed of light has been measured.

– Rømer 1676: delay in eclipse of one of Jupiter’s moons
– Bradley 1726: evidence for the speed of light from stellar

aberration
– Fizeau 1849: measurement of light speed via cog-and-mirror

apparatus
• More on Rømer

– Astronomical tables suggested that Io, one of Jupiter’s moons,
should move into the shadow of Jupiter at a certain time.
These tables were based on numerous observations of previ-
ous eclipses, from which the average orbit time etc of Io had
been calculated.

– Rømer noticed that certain irregularities in the recorded in-
tervals eclipse times — irregularities that other astronomers
had been treating as random — were actually systematic:
eclipses of Io tended to be delayed (respectively, advanced)
(relative to the prediction based on curve-fitting) by pre-
dictable amounts when the Earth was at points in its orbit
further from (resp. closer to) Jupiter. He also noticed that
this systematicity could be explained by the hypothesis that
light travelled with a finite speed.

– The accepted prediction for the eclipse on November 9, 1676,
was 45 seconds after 5:32am. Rømer correctly predicted that
this eclipse would occur exactly 10 minutes later than this
prediction.

– One can calculate the magnitude of the one-way speed of
light from the amount of time by which eclipses are de-
layed/advanced.
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• More on Bradley
– If you try to catch vertically-falling rain through a straw as

you are walking along (without the rain touching the insides
of the straw!), you don’t hold the straw vertically: you need
to tilt it forwards slightly. This is because the rain falls at a
finite speed.

– Similarly, to view a star through a telescope, one cannot quite
point the telescope straight at the star: one needs to aim the
telescope slightly ‘off’ the line along which light is arriving,
due to the fact that the Earth has (in general) a non-zero
velocity in the plane perpendicular to the arriving light ray,
and the fact that the speed of light is finite.

– This effect is small, but noticeable. By measuring the ‘angle
of aberration’ — the angle by which the telescope must be
aimed ‘off’ in order to ‘catch’ light from a given star — one
can, again, calculate the speed of light.

• The Fizeau measurements are of the average round-trip speed
of light. But the Romer and Bradley measurements are of the
one-way light speed.

• The claim (made by those who take such measurements to re-
fute the conventionality thesis) is that: since the one-way speed
of light can be measured, and is consistent with only one syn-
chrony scheme, there can be only one synchrony scheme that is
factually correct. All observations indicate that this scheme is
the Einstein-Poincare one.

(b) Reply: These measurement procedures presuppose synchrony by slow
clock transport. The fact that the one-way speed of light can be
measured once a particular synchrony procedure has been presupposed
is (of course) unsurprising, and (of course) shows nothing about the
conventionality or otherwise of any given synchrony scheme.

(c) Synchrony presuppositions in the Romer measurements

• To calculate the one-way speed of light from the Romer mea-
surements: Let ∆T be the time interval between two particular
successive eclipses (as recorded by clocks on Earth) that we would
expect on the assumption that light travelled at infinite speed.
Let the measured interval between those eclipses be ∆T + δt.
Let r be the distance between the positions of the Earth when
the two eclipses are observed (in, say, a frame in which the Sun
is stationary; for present purposes we can regard this frame as
inertial). Then, the one-way light speed is given by r

δt .
• But δt is the time lapse recorded by a clock that is moving rel-

ative to the frame we are using (viz., a frame in which the two
observation events are a distance r apart). Thus, to presuppose
that it records the ‘true’ time lapse between these events (rela-
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tive to the frame in question) is to presuppose synchrony by slow
clock transport.

(d) Synchrony presuppositions in the Bradley measurements
• A minute’s reflection should convince you that there is no fact

(hence, a fortiori, no fact that can be ascertained by measure-
ment) about the‘true angle’ between the tangent to a given point
on the surface of the Earth and a given star, except relative to
a standard of synchrony. (The true angle is obtained by joining
the position of the Earth at a given Earth-time to the location
of the star at the same time.)

• Hence, there is no fact about the angle of aberration except rel-
ative to a standard of synchrony. Any experimental procedure
for establishing angles of aberration must, as a matter of logic,
be presupposing some such standard.

• Here is a sketch of one way one might establish the angles of
aberration:
– One notices that, while (roughly) the same stars are visible

from a given point on the Earth’s surface in summer and win-
ter, the apparent angle between two given stars varies with
time of year. One realises that one can account for this vari-
ation by hypothesising that the Earth is moving on a partic-
ular spatial orbit (in the rest frame of the fixed stars), with
equal and opposite velocities in summer and winter. One
then calculates the aberration angles that would enable one
to account for the observed variations via the phenomenon
of aberration.

• If one establishes angles of aberration in this way, one has smug-
gled in synchrony presuppositions in presupposing that the Earth
travels with equal speeds at opposite points on its orbit. (Recall
that in general, one-way speed phenomena are isotropic only rel-
ative to the Einstein-Poincare synchrony convention.)

(e) Argument from Maxwell’s equations
• Anti-conventionalist argument: The speed of light (one-way or

two-way) is entailed by the laws of physics (specifically, Maxwell’s
equations). In particular, those equations entail that the one-way
speed of light is isotropic.

• Reply: The isotropy of the one-way speed of light in Lorentz
charts is entailed by Maxwell’s equations. Those same equations
entail that the one-way speed of light is anisotropic in other
charts. Of course, ε 6= 1

2 synchrony conventions do not result in
Lorentz charts.

(f) Argument from the conservation of momentum
• Reply: Momentum is convention-dependent. The conservation

of momentum holds only in Lorentz charts.
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(g) Argument from clock transport

• Claim: We can discover facts about simultaneity by transporting
clocks. What we discover is that the Einstein-Poincare means for
establishing synchrony is correct.

• Reply: Synchrony by clock transport is just another synchrony
schema (one that happens to coincide with Einstein-Poincare
synchrony in the limit of slow clock transport).

4. General counterargument: all such schemes must fail

(a) We have already seen that a special-relativistic theory can be given
a generally covariant form. Thus, the phenomena entailed by such
a theory can be given a correct and consistent (if more complicated)
description relative to any coordinate system. Coordinate systems
that are obtained in part via an ε 6= 1

2 synchrony convention are
just a special case of this. (Essentially the same argument as this is
advocated by Janis, although he puts the argument a little differently:
see the section on ‘phenomenological counterarguments’ in his SEP
article.)

3.6.3 The impact of Malament’s theorem

1. A preliminary consensus

(a) Circa 1977, the orthodox view was that Reichenbach and Grunbaum
were correct: that simultaneity in special relativity is conventional.

2. Malament’s theorem (1977)

(a) Malament proved that the Einstein simultaneity relation for a given
inertial frame F is the only nontrivial equivalence relation that is
definable from (a) the lightcone structure of Minkowski spacetime
and (b) the frame F.

(b) Sketch of Malament’s result:

• ‘Causal automorphism’: A map from Minkowski spacetime onto
itself that preserves lightcone structure.

• ‘O-causal automorphism’: A map from Minkowski spacetime
onto itself that both preserves lightcone structure, and takes
all points on the worldline O to (possibly, but not necessarily,
distinct) points on O.

• Claim (about definability): a relation [on Minkowski spacetime]
is ‘definable in terms of causal structure and the worldline O’ iff
it is invariant under all O-causal automorphisms.

• Claim: The only relation on Minkowski spacetime that is defin-
able in terms of causal structure and a given inertial worldline
O, apart from the trivial relation and the universal relation, is
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the relation of Einstein-Poincare synchrony in the rest frame of
O.
– This should not be particularly surprising. A Reichenbach-

2 synchrony relation, for instance, required the specification
of a direction rmax, and (as a result) clearly is not invari-
ant under spatial rotations about the worldline O (and such
rotations are of course O-causal automorphisms).

(c) As we saw above, some such definability claim was an essential premise
for Grunbaum’s argument for the conventionality thesis. Malament
concludes that Grunbaum’s argument is unsound on technical grounds.
• But notice that even the standard simultaneity relation isn’t

defined from the primitive stuff (lightcone structure) alone —
it’s defined from lightcone structure plus standard of rest. It’s
therefore unclear why our‘Reichenbach-2’ simultaneity relations,
which are definable from lightcone structure together with stan-
dard of rest and specification of a spatial direction, would be
thought to be on conceptually such a very different footing from
the standard relation.

3. The current consensus: simultaneity in special relativity is *not* conven-
tional.

4. In the modern debate: it is not entirely clear what is meant by the claim
that simultaneity isn’t (or is) conventional; in particular, it is not clear
whether parties on ‘opposing sides’ of this debate mean by ‘conventional’
the same thing as one another. This debate is a prime candidate for
resolution by clarification of terms (in this case, the term ‘convention’).

4 The twins paradox

1. The (would-be) paradox

(a) Consider two twins: One who journeys from Earth to Mars and back
in a high-speed rocket, and one who stays at home. Suppose each
carries a clock. According to special relativity, a clock that is moving
in any given inertial frame runs slow according to that frame. Hence,
according to the stay-at-home-twin’s clock, the rocket twin’s clock
will run slow throughout its journey; the stay-at-home twin should
therefore predict that his twin’s clock will show less elapsed time
than will his own clock, when they are eventually reunited. But
(the paradox-generating thought goes) the situation is in all relevant
respects symmetrical : it is true at every moment in the rocket twin’s
rest frame that the ‘stay-at-home’ twin is moving, hence, the rocket
twin should likewise predict that his twin’s clock will show les elapsed
time than his own clock when they are reunited. But the twins cannot
both be correct, since their predictions now contradict one another.
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2. The explanation based on acceleration

(a) Suggested explanation: The situation is relevantly asymmetrical be-
cause the rocket twin, unlike the stay-at-home twin, necessarily un-
dergoes acceleration at some point during his journey. Thus, it can-
not be true at all moments that he occupies some inertial frame, and
this invalidates his reasoning.

(b) This is confused: acceleration is not required

• Acceleration-free version of the twins paradox: Replace the rocket
twin with two clocks, each moving inertially throughout, and
passing one another at the rocket twin’s ‘turn-around’ spacetime
point, at which point they are synchronised.

3. The claim that GR is required in order to dissolve the paradox

(a) Suggested explanation: This is indeed a paradox within special rela-
tivity. To resolve it, we need to be able to reason adequately about
accelerating frames, and that requires general relativity.

• This is badly confused. We have already noted that there is an
acceleration-free version of the ‘paradox’. But that aside, and
more importantly, special relativity can reason correctly about
accelerating frames. (Special relativity can reason correctly in
terms of an arbitrary frame, i.e., as we have already noted, it can
be given a generally covariant formulation. The key difference
between special and general relativity is not which frames are
permitted, but whether or not the metric is ‘flat’.)

4. The comoving-frames explanation

(a) The rocket twin’s reasoning is mistaken. It is indeed true at every
point on his worldline that the stay-at-home twin’s clock runs slow
according to the rest frame that he is currently in. But the point
on the stay-at-home twin’s worldline that is simultaneous with the
rocket twin’s turn-around point in the pre-turn frame is earlier than
the point on the stay-at-home twin’s worldline that is simultane-
ous with the rocket twin’s turn-around point in the post-turn frame.
Neglecting this point, the rocket twin fails to count part of the stay-
at-home twin’s worldline, in counting how much elapsed time the
stay-at-home clock records between the twins’ parting and reunion.
(See figure 10.)

(b) This explanation is correct.

5. The spacetime structure explanation: the two twins traverse curves of
different proper time. Each’s ageing process is a clock surveying proper
time along its own worldline.

31



Figure 10: Diagnosis of the rocket twin’s error in the twins ‘paradox’. In this
diagram, S is simultaneous with R in the rest frame of PR, and T is simultane-
ous with R in the rest frame of RQ. The rocket twin correctly reasons that the
elapsed time along PS is less than that along PR, and that the elapsed time
along TQ is less than that along RQ. His implicit mistake is to take the elapsed
time along PQ to be the sum of that along PS and that along TQ, thus failing
to count the middle portion (ST ) of the stay-at-home twin’s worldline.
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(a) Elementary calculations show that the integral of proper time along
the rocket twin’s path,∫

rocket path

dλ
√
ηµνdxµdxν , (29)

is less than the integral of proper time along the stay-at-home twin’s
path, ∫

home path

dλ
√
ηµνdxµdxν . (30)

Each twin should calculate the time each clock will record by in-
tegrating proper time along the relevant worldline. The result just
is that the stay-at-home twin’s clock will record more elapsed time
(in Minkowski spacetime, a spacetime path composed of two succes-
sive future-directed timelike worldlines is shorter than the straight
(timelike) spacetime path that directly joins its endpoints).

(b) Demystifying analogy: The ‘wheel paradox’

• Suppose you and I live in a Euclidean space. We start at a
common point of space, and we each walk in a straight line away
from this point. Each of us uses a coordinate system such that
we are walking in our own positive z-direction.
– I report that you are travelling further for each unit gain in

z-distance than I am. You report that I am travelling further
for each unit gain in z-distance than you are.

• After some distance, I turn through 90 degrees and walk until
my path once again intersects yours. As I turn, I change the
coordinate system I am using, so that it will still be the case
after my turn that I am walking in my own positive z-direction.

• When our paths intersect for a second time, I will have walked
further than you. This can be verified by e.g. having had us each
roll a wheel of the same diameter along our path, and count the
number of times the wheel turns.
– You could explain this fact by noting that throughout your

journey, I was walking further per unit gain in z-distance
than you were.

– But (the ‘wheel paradox’) couldn’t I say the same about you?
• The ‘adapted frames explanation’: In order to make it the case

throughout my journey that I was walking along my own positive
z-axis, I had to change coordinate system midway in such a way
that the point on your path that counted as ‘at the same value
of z as me’ before my change of coordinate system was further
from the starting point than the point on your path that counted
as ‘at the same value of z as me’ after my change of coordinate
system. Hence, in my argument for the claim that you must
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have walked further than me, I was double-counting part of your
path. In contrast, since you used the same coordinate system
throughout, you were making no such blunder.

• The space-structure explanation in this case: In a Euclidean
space, an out-and-back path (two sides of a triangle) is longer
than the straight path that joins its ends (the third side of that
triangle). And the wheels are measuring path length.
– It is no more mysterious than this that, in Minkowski space-

time, an out-and-back timelike path (the worldline of the
travelling twin) is shorter than the straight timelike path
that joins its ends (the worldline of the stay-at-home twin).

(c) The spacetime-structure is also correct, although less explanatory
(since the original paradox was framed in comoving-frames language,
and the spacetime-structure analysis doesn’t engage with the mis-
taken reasoning and attempt to point out the mistake).

5 Length contraction

A thoughtful study of Minkowski diagrams shows that a given object’s length
(the spatial distance between its ends) is longer in its own rest frame than in
any other frame.

1. Referring to figure 11:

(a) The length of the rod in its own rest frame is ∆x′(a, c).

(b) The length of the rod in our ‘stationary’ frame is ∆x(a, b).

(c) But ∆x′(a, c) = ∆x′(a, b). (The spatial distance between an event
on the left-hand end of a rod and an event on its right-hand end in
the rod’s own rest frame is independent of which particular events on
the rod-ends’ worldlines we pick. You can easily convince yourself of
this by drawing a Minkowski diagram of a rod that is at rest in the
frame of the diagram.)

(d) By definition (of ‘length contraction’), we have length contraction iff
∆x(a, b) < ∆x′(a, c), i.e. iff ∆x(a, b) < ∆x′(a, b).

(e) The Lorentz transformations tell us that (if we are using Lorentz
charts) this is indeed the case: the transformation for the spatial
coordinate is

x′ = γ(x− vt), (31)

hence

∆x′(a, b) = γ (∆x(a, b)− v∆t(a, b)) (32)
= γ∆x(a, b)since∆t(a, b) = 0 (33)
> ∆x(a, b)sinceγ > 1. (34)
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Figure 11: Length contraction. The diagram depicts the worldlines of the two
ends of a rod that is moving relative to the (t, x) frame. We will have length
contraction iff ∆x(a, b) < ∆x′(a, c), where x′ is the spatial coordinate in the
Lorentz rest frame of the rod.

2. We can sharpen our understanding of what is going on in length con-
traction by making sure we have a clear account of what goes on in the
following two ‘puzzle cases’: the ‘car in a garage’ problem and Bell’s two-
rockets puzzle.

3. Car in a garage

(a) You have a fancy new car. It is 5m long. Unfortunately, your garage
is only 4m long. It seems you have a parking problem. But then,
having learnt special relativity, you have a brainwave: if you drive
the car into the garage fast enough, you’ve been taught, the car will
contract lengthwise. If you then slam on the brakes really hard and
have a friend close the garage door really fast, you’ll be able to shut
the door with the car inside the garage [and worry later about how
to get yourself out of the garage].

(b) Q: Will this work? What exactly will happen if you try it (permitting
the technologically unfeasible, but not the physically impossible)?

4. Comoving-frames analysis of the garage problem

(a) There are various possible outcomes. Unless the car gets crushed to
less than its manufactured length between the garage door and wall
after having been shut in the garage, it must be 5m long in the rest
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Figure 12: The garage problem. The moving car is 4m long (in the garage’s
rest frame). When it is brought to a standstill (in the garage frame), it must
either regain its ‘rest length’ of 5m (in that frame), or be crushed to maintain
4m length despite its deceleration.

frame of the garage after having come to a standstill in that frame.
One way to reconcile this with the fact that the car is 4m long in
that same rest frame while moving is to hypothesise that the back of
the car decelerates more quickly (again, in the garage’s rest frame)
than does the front of the car.

(b) You could, in principle, shut the garage door with the car inside. But
a very short time afterwards, either the front or the back of the car
(or both) would burst out of the garage, or (if the garage walls and
door were strong enough) the car would be deformed — roughly the
way you would expect a 5m long car crushed to 4m length in a vice
to be deformed — in order to remain inside the garage.

5. Two-rockets puzzle

Three small spaceships, A, B and C, drift freely in a region of
space remote from other matter, without rotation and relative
motion, with B and C equidistant from A.
On reception of a signal from A the motors of B and C are
ignited and they accelerate gently.
Let the ships B and C be identical, and have identical accel-
eration programmes. Then (as reckoned by the observer in A)
they will have at every moment the same velocity, and so remain
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displaced one from the other by a fixed distance. Suppose that
a fragile thread is tied initially between projections from B and
C[, and that] t is just long enough to span the required distance
initially. (Bell, 1987, p. 67)

(a) Q: Will the string break, as the rockets speed up?

6. Comoving frames analysis of the rockets problem

(a) Let l be the original length of the string, in the original rest frame of
the rockets.

(b) After being boosted, the string must have natural length l in its new
rest frame, i.e. this is the length the string would have in its rest
frame if its length were not constrained by the fact that the rockets
are artificially kept a fixed distance apart.

(c) So what we have to work out is: whether the separation of the rockets
(and hence the string’s actual, as opposed to natural, length), in the
rockets’ rest frame after being boosted, is smaller than, greater than
or equal to l.

(d) From the Lorentz transformations, as above, we can deduce that it
is greater than l (see figure 13).

(e) It follows that the string will be stretched (and presumably will even-
tually break).

(f) Exercise: Suppose we try to describe this scenario in the rockets’
post-boost frame throughout. What is wrong with the following line
of reasoning? “In the post-boost frame, the natural length of the
string increases as a result of the boost. Hence, the string will not
break; it will, rather, go slack.”

6 Bell’s ‘Lorentzian pedagogy’

(This section is an outline of Bell’s (1987) paper.)
Bell’s central point: while one can explain phenomena such as length con-

traction and time dilation via comoving-frames accounts, it is not necessary to
switch between frames in order to see what will happen in such puzzle cases in
special relativity. A correct and comprehensible story can always be told from
within a single frame.

1. If a string (or anything else) contracts when set in motion, this must
follow from the dynamics that govern it. So we can predict the string’s
behaviour in the same way in which we predict the behaviour of anything
else in physics: write down some laws and initial conditions, and see what
follows.

2. Case study: An electron orbiting a moving proton
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Figure 13: Bell’s two-rockets problem. The rockets’ acceleration programs are
arranged so that they are always a distance l apart in the frame of the diagram
(i.e. the frame in which they are initially at rest). From the fact that ∆x(c, d) =
l, we deduce that ∆x′(c, e) > l, from which it follows (reasoning in the rockets’
new rest frame) that the string is being stretched beyond its natural length.
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Figure 14: The left-hand diagram illustrates the spherically symmetric electric
field generated by a stationary point charge. The right-hand diagram corre-
sponds to a charge moving in the left-right direction: the lines of electric force
are ‘squeezed’ away from the line of motion.

(a) We know, from electromagnetism, the electric and magnetic fields
that are generated by a moving charge:

Ez = Zez′
(
x2 + y2 + z′2

)− 3
2

Ex = Zex
(
x2 + y2 + z′2

)− 3
2

Ey = Zey
(
x2 + y2 + z′2

)− 3
2

Bx = −
(
V
c

)
Ey

By = −
(
V
c

)
Ex,

(35)

where z′ := (z − zN (t))
(

1− V 2

c2

)− 1
2
.

(b) In the special case V = 0, these fields are (of course) spherically
symmetrical. But for V 6= 0, they are not. (See figure 14.)

(c) We should therefore expect, on theoretical grounds, that matter in
rapid motion will change shape.

3. Consider now an electron orbiting a moving nucleus.

(a) The nucleus (since it has a net positive charge) generates fields as
described above.

(b) The equation of motion for an electron moving in an external elec-
tromagnetic field is given by

dp
dt

= −e
(

E +
ṙe
c
×B

)
, (36)

where ṙe = pq
m2+p2

c2

.

(c) It follows that (if the nucleus is accelerated gradually enough not
to e.g. tear apart the atom) the initially circular orbit deforms into
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an ellipse. (This should be unsurprising, in the light of the above
expressions for electric field.)

(d) Also: If the period of the orbit when the nucleus is stationary is T , it
follows from the above equations of motion that the period of orbit
around the moving nucleus is T

(
1− V 2

c2

)
.

4. A change of variables:

(a) Consider the following change of variables:

z′ =
(

1− V (t)2

c2

)− 1
2

(z − zN (t)) ,
x′ = x,
y′ = y,

t′ =
∫ t
0
dτ
√

1− V (t)2

c2 − 1
c2V (t)z′.

(37)

(b) In terms of these variables, the orbit is ‘circular’ with ‘period T ’, and
has ‘constant angular velocity’. Note that

The description of the orbit of the moving atom in terms of
the primed variables is identical with the description of the
orbit of the stationary atom in terms of the original vari-
ables. [And T]he expression of the field of he uniformly mov-
ing charge in terms of the primed variables is identical with
the expression of the field of the stationary charge in terms
of the original variables. (Bell, 1987, p.72; emphasis in orig-
inal)

5. Moving observers

(a) Above, we introduced the ‘primed’ coordinates x′, y′, z′, t′ merely for
mathematical convenience, without any suggestion that e.g. t′ was a
‘time’ coordinate.

(b) However, it is easy to see that these primed coordinates ‘are precisely
those which would naturally be adopted by an observer moving with
constant velocity who imagines herself to be at rest ’ (Bell, ibid., p.75;
emphasis in original).

(c) If we regard our original (‘stationary’) observer as being ‘really’ at
rest, we will regard the moving observer as subject to certain sys-
tematic illusions:

• Her measuring rods are contracted in the z direction. But she
doesn’t realise this, because e.g. the retinas of her eyes are con-
tracted in the z direction also.

• Her clocks run slow. But she doesn’t realise this, because e.g.
her thinking runs slow too.
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(d) Nothing in the experimental basis for special relativity forces us to
give up the idea that there is (‘really’) a standard of absolute rest.
But the implications of the theory for experiment do force us to give
up, once and for all, the idea that we could ever detect our absolute
velocity.

6. Generalising the lesson: Lorentz covariance

(a) Above, we proceeded by studying the specific dynamical laws (viz.,
Maxwell’s equations and the relativistic Lorentz force law) for the
phenomenon we were interested in.

(b) But (almost) the only feature of these laws that we actually needed,
in order to see that moving objects behave the same way in terms of
the ‘primed’ coordinates (37) as stationary objects behave in terms
of the ‘unprimed’ coordinates, was their Lorentz covariance.

(c) ‘Law L is Lorentz covariant’: If we replace both x, y, z, t and the other
dynamical quantities (e.g. E,B,p) in law L with their ‘primed’ coun-
terparts, and then we eliminate the primes using the expressions for
the Lorentz transformations that relate primed to unprimed quanti-
ties, we recover the same laws we started with.

(d) The Lorentz covariance of the laws entails a theorem of corresponding
states: For any solution of the dynamical equations that is expressed
in terms of the original coordinates x, y, z, t, one can construct a new
solution by putting primes on all the variables and then eliminating
these primes by means of the expressions relating primed to unprimed
quantities. I.e. ‘Given any state of motion of the system, there
is a corresponding ‘primed’ state which is in overall motion with
respect to the original[. And it follows from the form of the Lorentz
transformations that this primed counterpart] shows the Fitzgerald
contraction, and the Larmor dilation.’ (Bell, ibid., p.73)

7. What follows from all this?

(a) Not that there is a standard of absolute rest. (The ‘Lorentzian phi-
losophy’)

(b) Not that one cannot predict, or that one cannot explain, length con-
traction and time dilation by first considering the description of each
object in its own rest frame and using the Lorentz transformations
to work out deritatively how that object will appear to observers in
other frames.

(c) Rather, that (as advertised at the outset) it is always possible to tell
a correct and comprehensible story from within a single frame. (The
‘Lorentzian pedagogy’)
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7 Spacetime geometry and explanation

7.1 Three explanations of length contraction and time di-
lation

1. We have seen three styles of ‘explanation’ of length contraction and time
dilation

(a) Frame-dependently, always using comoving frames
(b) Lorentz-pedagogically: on the basis of the details of a particular

Lorentz-covariant dynamics (e.g. (Bell, 1987))
(c) Truncated-Lorentz-pedagogically: on the basis of Lorentz covariance

of the dynamical laws alone

2. More on the truncated Lorentzian pedagogy: two notes of caution

(a) As Bell noted (but did not particularly emphasise), Lorentz covari-
ance alone does not entail that (hence, does not explain why) either
• A given system in a given state does go into the corresponding

‘primed’ state when the system is boosted.
– It won’t, always. E.g. in Bell’s example (and as he points

out), if the neutron is accelerated too rapidly, the electron
will not follow along and take up the Fitzgerald-contracted
orbit around the moving nucleus, but will rather be left be-
hind altogether.

– What we hope for, and generally have, but what is not guar-
anteed by Lorentz covariance, is that if the system is boosted
‘sufficiently gradually’ then it will end up in the correspond-
ing state.
∗ This is the feature that HRB [earlier in this course] called

‘the boostability of rods and clocks’.
∗ Bell sketched how this ‘boostability’ may be shown for the

particular system, with the particular (Lorentz-covariant)
dynamics he considered by way of example, but he did not
identify (and neither will we) the general features of his
example from which it follows.

• There are any systems that render ‘length/time in frame F ac-
cording to the Minkowski metric’ fairly directly empirically ac-
cessible in the first place. (The existence of rods and clocks.)
– Bell exhibits a system that is possible according to electro-

magnetism and that functions both as a natural clock and as
a natural measuring rod (relative to the Minkowski metric,
in the original frame). But this exhibition utilised specific
details of Maxwell theory. We have no proof (and it is easy
to show that it is not true) that there will be any natural
rods/clocks in an arbitrary Lorentz-covariant theory.
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(b) Therefore, to be a sound mode of explanation of length contraction
and time dilation, the truncated Lorentzian pedagogy must supple-
ment the postulate that

• the laws (whatever their details) are Lorentz covariant

with the additional postulates that the laws (whatever their details)
are such that

• there exist systems that function as natural rods and clocks in
the original frame, and

• the system functioning as rod/clock does indeed go into its ‘cor-
responding state’ when boosted sufficiently gently.

7.2 Explanation and spacetime realism

References:

• H. Brown (2005), esp. chapter 8.

• Brad Skow’s review of HRB’s book: (?, ?) available online at http://ndpr.nd.edu/review.cfm?id=6603.

This last section of the course focusses on an issue that is currently under
active dispute in the foundations of physics community. The issue concerns the
status of the Minkowski metric in special relativity: specifically, whether it is
an independent element of reality, with ontological status on a par with other
equally fundamental physical fields (e.g. the electromagnetic field), or whether,
in some sense, talk of the Minkowski metric says nothing ‘over and above’ things
that we can already say by talking about other fields, and the Lorentz covariance
of the equations that govern them.

Harvey Brown’s book defends a more deflationary account of the Minkowski
metric than the current orthodoxy in the foundations of physics community;
Skow’s review indicates how a defender of the orthodoxy is likely to respond.

1. There are two (related) sets of disputed questions:

(a) Does postulating Minkowski geometry for spacetime explain

• the Lorentz invariance of the dynamical laws?
• Phenomena such as length contraction and time dilation?

(b) Insofar as special relativity is empirically adequate, should this lead
us to believe in Minkowski geometry as an independent real feature
of the world?

2. Two views of Minkowski geometry in answer to these questions: Insofar
as we believe Special Relativity . . .

(a) ‘Explanationism’: . . . we should believe in an independent Minkowski
geometry, and (perhaps: precisely because) postulating this geometry
enables us to explain various things that we can’t otherwise explain.
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(b) ‘Codificationism’: . . . we should believe that the geometry of space-
time is Minkowskian, but this latter statement is a mere codification
of certain facts about the [standard-formulation] dynamical laws (e.g.
their Lorentz covariance). As such, it cannot explain those facts.

• ‘Opium sends people to sleep because it has a dormitive virtue’.
This is not an explanation.

3. Adjudicating between the Explanationist and the Codificationist will re-
quire clarity on the basic points of two areas of the philosophy of science:
scientific realism, and inference to the best explanation (IBE).

4. Scientific realism vs. antirealism

• Scientific realism (roughly): The empirical success of a scientific the-
ory gives us a good reason to believe in the entities postulated by
that theory/to believe that the theory is (approximately) true.

• Scientific antirealism (roughly): The empirical success of a scientific
theory gives us a good reason to believe that that theory will continue
to be empirically successful, but not that what it says about goings-
on beyond the observable level is true, or approximately true, or that
(anything like) the unobservable entities postulated by the theory
exist.

– Examples of scientific antirealism
∗ An antirealist about electrons would have no quarrel with

scientists uttering sentences like ‘the accelerator gives elec-
trons an energy of X MeV’, but would insist that such talk is
merely shorthand for a long conjunction of statements about
correlations between observables (‘if I was to press the red
button and place a sample of material Y in the centre of the
accelerator tube then my displays would read such-and-such’,
and so forth).
∗ Copernicus’s then-controversial tome setting out heliocen-

tric astronomy was preceded by a preface (now thought to
have been written by his friend Osiander, but claiming to be
written by Copernicus himself) ‘explaining’ that one needn’t
be worried about the implications of heliocentric astronomy
for e.g. theology, because Copernicus’s system was intended
merely as a simple technique for calculating the apparent po-
sitions of stars and planets, not as a true description of the
world.
∗ Most of the current debate in the foundations of quantum

mechanics makes sense only on the assumption that physics
gives us a handle on the reality behind the observed phenom-
ena, rather than merely a way of predicting the phenomena.
Antirealists, rejecting that background assumption, regard
such debates as fundamentally misguided.
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– It is essential to distinguish between antirealism across the board
— the claim that science in general says nothing about the re-
ality behind the appearances — and antirealism about particular
entities.

– The codificationist is not an antirealist across the board. He is
generally a scientific realist, but thinks that there are special rea-
sons for not regarding the Minkowski metric as an independently
existing entity.

– It is important to bear this in mind, because it means that an
argument for codificationism should not ‘prove too much’, in
the sense of equally well implying that all talk of unobservable
entities in physics has the status of mere codification — if it does
that, it is an argument for antirealism across the board, rather
than for codificationism specifically about the Minkowski metric.

5. Inference to the best explanation

• Nobody thinks that scientific theories are deductively proved from
experimental data.

• Nobody thinks that scientific theories proper (as opposed to: phe-
nomenological models) are obtained by simple inductive generalisa-
tion from experimental data.

• The methodology is better described as hypothetico-deductive: one
postulates or hypothesises a theory, deduces predictions from that
theory (what one would expect to see in experiments if that theory
were true), and tests those predictions against experiment. If the
predictions do match experiment, this is, in some sense, a strike in
favour of the theory. (Here agreement ends as to what exactly is
going on.)

• Scientific realists are often fans of inference to the best explanation
(IBE): i.e., they think that inferences of the form

P1. We have obtained data D.
P2. Theory T is the best available explanation of data D.
C. Theory T is [approximately] true,

while (of course) not deductively valid, are reasonable (i.e. that it
is reasonable to assign high probability to their conclusions on the
basis of their premises).

• If one agrees that IBE is a key part of the methodology of science,
the two types of ‘disputed question’ mentioned above become in-
timately linked: one will think that the claim that postulating an
independently existing Minkowski metric has explanatory power is
a good reason for accepting the claim that there is an independent
Minkowski metric field.
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6. We approach the debate between codificationists and explanationists by
identifying four separate claims (some controversial, some not), and con-
sidering arguments for and/or against each in turn.

7. Claim 1: ‘Minkowski geometry explains Lorentz covariance’

• This is one of the explanationists’ claims, denied by the codification-
ist.

• It should be uncontroversial (I think!) that, in a certain sense we
will make precise, Minkowski geometry entails Lorentz covariance.
It will remain controversial whether or not the arguments demon-
strating this entailment amount to genuine explanations (as opposed
to pseudo-explanations, of ‘dormitive virtue’ type).

• Making things precise: there are actually two claims being made
here.

– Claim 1a: The claim that there is a Minkowski metric (explicit
representation of which has been suppressed in our ‘standard for-
mulation’) explains the fact that our standard-formulation laws
are in general not covariant under non-Lorentz transformations.

– Claim 1b: The claim that there is no suppressed structure other
than the Minkowski metric explains the fact that our standard-
formulation laws are covariant under Lorentz transformations.

We will outline the argument for each of these two claims in a mo-
ment.

• The common setting for both arguments: Suppose we start from a
theory in generally covariant form, and that one of the fields is the
Minkowski metric field ηµν .

– Example (a toy theory): ηµνvµwν = 1.

• Fact 1: In Lorentz charts, η takes the especially simple form

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (38)

• Fact 2: Lorentz charts are related to one another by Lorentz trans-
formations.

• Defence of claim 1a:

– Suppose we make a ‘standard formulation’ version of our theory
by replacing the components of η with the (common) values that
they take in a particular Lorentz chart, C∗.
∗ In our toy example, this gives the equation

−v0w0 + v ·w = 1. (39)

46



– Then, in general, our equations will be false in all charts in which
the components of η take different values from the values they
take in C∗, i.e. in all non-Lorentz charts. (Only ‘in general’,
because if the equations happen not to use e.g. the component
η03, then the equations will be true also charts that differ from
Lorentz charts only on the value of η03. Our above example
illustrates the ‘general case’ in which all components of η are
involved in the theory’s equations.)

– If T is a non-Lorentz transformation between charts, then T(C∗)
is a non-Lorentz chart, hence a chart in which our equations are
false.

– So T can take us from a chart in which our equations are true to
charts in which our equations are false, i.e. (by definition of ‘co-
variance’) our theory is not covariant under the transformation
T.

• Defence of Claim 1b:

– Suppose that our standard-formulation does not suppress any-
thing other than the Minkowski metric.

– Then, its equations are guaranteed to be true in all charts in
which the components of η are the same as its components in
C∗, i.e. are guaranteed to be true in all Lorentz charts.
∗ The only way the standard-formulation equations could fail

to be Lorentz covariant is if their derivation (from the GC
formulation) involved suppressing some field whose compo-
nents vary from one Lorentz chart to another (e.g., in our
toy example, the four-vector v).

– So, there is a collection of charts (the Lorentz charts) that are
related to one another by Lorentz transformations, and in all of
which the equations are true: i.e., the theory is Lorentz covariant.

• Where we’ve got to: The hypothesis that there exists a background
Minkowski metric, and that there is no other structure that has been
suppressed in going from the generally covariant to the standard for-
mulation of our theory, does entail the result that the standard-
formulation laws will be Lorentz covariant (and should lead us to
expect that they will not be covariant under an arbitrarily selected
non-Lorentz transformation). But whether or not this entailment-
plus-expectation amounts to an explanation depends on whether or
not the Minkowski metric is an entity ontologically indepedent of
those the standard formulation directly talks about. Codificationists
insist that it is not, hence don’t count the above entailment as an
explanation; explanationists think that it is, and that belief in such
an entity is justified by IBE.

• The explanationists’ position is roughly as follows:
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– Something real must be conceived as the cause for the preference
of a Lorentz over a non-Lorentz coordinate system.
∗ The existence of a (real) background Minkowski metric is a

candidate for this cause. We have no other candidates.
– The explanationists’ main gripe with the codificationist account

is that the latter is (the explanationists think) just an ‘as if’
theory: matter fields and particles behave as if they are coupling
to a background Minkowski metric, but there is no Minkowski
metric in reality.
∗ Consider, e.g., the theory that the world is just as the ordi-

nary person thinks it is, but there are in reality no cats: it
is just that mice, photons etc behave just as they would if
certain regions of spacetime were worldtubes of cats. This
theory is empirically equivalent to the ordinary person’s the-
ory (unless you happen to be a cat), but it’s clearly a stupid
theory. The moral seems to be that ‘as if’ theories are, in
general, bad theories.
∗ One of the explanationists’ challenges to the codificationist is

to explain why the codificationist account of the Minkowski
metric is any better than the no-cat theory.

8. Claim 2 (accepted by all parties): Lorentz covariance does not, by itself,
explain length contraction and time dilation.

(a) This is just the point already made above: that the truncated Lorentzian
pedagogy requires assumptions of rod/clock existence and of ‘boost-
ability’ in order to explain length contraction and time dilation.

(b) Corollary: Minkowski background structure (whether or not one calls
such structure ‘geometrical’) does not, by itself, explain length con-
traction and time dilation.

9. Claim 3 (orthodoxy; denied by codificationists): Minkowski background
structure, when supplemented with rod/clock existence and boostability
assumptions, does explain length contraction and time dilation.

• This just is the ‘truncated Lorentzian pedagogy’. What the codifica-
tionist denies is that the Minkowski metric is doing explanatory work
in this story — that an account that takes the Minkowski metric as
starting point is explanatorily any better than one that simply starts
form the Lorentz-covariance of the standard-formulation laws. (Cf.
claim 1.)

10. Some of Brown’s objections to the explanationists’ position, and their
standard replies

(a) Objection 1: the explanationists’ account [i.e., roughly that discussed
above, under ‘Claim 1’] of the relationship between Minkowski geom-
etry and Lorentz covariance is ‘wholly unclear’ (Brown, ibid., p.134)
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i. Reply: No, it isn’t. . . what’s the problem?

(b) Objection 2: Spacetime structure in SR violates the action-reaction
principle (Brown, ibid., section 8.3.1)

i. Reply: The action-reaction principle is neither an [ontological]
criterion of reality, nor an [epistemological] criterion of legitimate
postulation.

(c) Objection 3: Geometry doesn’t always explain. Why would the
present case be any different? (Brown, ibid., sections 8.2.1–8.2.3)

i. Short reply: Well, why would the present case be the same?
• Nobody was offering the argument ‘the Minkowski structure

is geometrical structure, therefore it is explanatory’.

11. Claim 4 (acceptance roster unknown, but I think includes HRB): Saying
that the Minkowski structure is geometrical/spatiotemporal/etc structure
does not explain (as opposed to codify) anything.

(a) One of the issues causing confusion between Brown and his crit-
ics, I think, is that of whether or not it is permissible to postulate
that such-and-such a field represents spacetime structure (in specified
ways).

• Analogy:
– Q: Can I identify an arbitrary collection of particles in New-

tonian mechanics, and postulate that they compose a billiard
ball?

– A: Of course not: they have to behave like a billiard ball in
order to deserve the name.

– Q: Can I explain why they behave like a billiard ball by
saying that they are one?

– A: Of course not. (That would be like explaining why opium
makes one sleepy by saying that it has a dormitive virtue.)

• Suggested methodology: postulate the physical reality of certain
mathematically specified structures; then argue, on the basis of
how they behave, that they deserve certain names.
– Brown’s rhetorical question: which of the two rank-two Lorentz-

signature tensor fields in Bekenstein’s bimetric theory ‘is ge-
ometrical’? This is either a pseudo-question, or is to be
answered by looking at the dynamics (to see how each of the
tensors in question couples to ordinary matter); it isn’t to be
answered by mere postulation, any more than the question of
whether my favourite N particles are currently constituting
a billiard ball (given their positions etc) is to be answered by
mere postulation.
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• But the issue addressed by Claim 4 must sharply be separated
from the issue of whether or not the Lorentz covariance of the
dynamical laws gives us reason to believe in the Minkowski tensor
field, specified via its mathematical structure.
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