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Abstract

Recent work in the Everett interpretation has suggested that the
problem of probability can be solved by understanding probability in
terms of rationality. However, there are two problems relating to prob-
ability in Everett — one practical, the other epistemic — and the
rationality-based program directly addresses only the practical prob-
lem. One might therefore worry that the problem of probability is only
‘half solved’ by this approach. This paper aims to dispel that worry:
a solution to the epistemic problem follows from the rationality-based
solution to the practical problem.

Keywords: Everett interpretation, probability, decision theory, con-
firmation

1 Introduction

Stochastic quantum mechanics (QMS) is an indeterministic theory: that is,
it is a theory according to which an initial segment of a history of the universe
has more than one dynamically possible future continuation. Further, it is
a chance theory: that is, the theory assigns chances to the various possible
futures. In the case of stochastic quantum mechanics, the chances are given
by the Born rule.1

Everettian quantum mechanics (QME) is a branching-universe theory.
A branching-universe theory is one according to which the history of reality
has a branching structure: as one goes forward in time, branches split in to
multiple copies. An initial branch-segment has, in general, more than one

1An (approximate) example: the spontaneous collapse theory of Ghirardi, Rimini and
Weber (1986).
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real future continuation. Further, QME is a weighted branching-universe
theory: the theory assigns weights to the various branches. In Everettian
quantum mechanics, the branch weights are given by a particular function
that we’ll refer to as the ‘Everettian weight function’; this function is math-
ematically equal to the Born rule.2

The weight function in a weighted branching-universe theory is, mathe-
matically speaking, a probability function on the space of branches: that is,
it satisfies the Kolmogorov axioms. But more is presumably required: not
every function that satisfies the Kolmogorov axioms will do the work that we
need ‘physical probability’ to do. (For example: the standard area measure
on the surface of my desk satisfies the Kolmogorov axioms, but I don’t have
much use for the phrase ‘the probability of the aging inkblot on my desk-
top’. (Not the probability that it exists: it certainly exists. The probability
of the inkblot itself.)) The question then arises: can branch weights do all
the necessary work that chances do? If not, the Everett interpretation will
be in trouble.

1.1 Two problems of probability

I said that not every function that satisfies the Kolmogorov axioms will ‘do
the work that we need physical probability to do’. But what exactly is that
work? To specify exactly why Everettian probability might be problematic,
we need a precise answer to this question.

The easiest way to identify the required roles of physical probability is
to imagine stripping Everettian quantum mechanics of its branch weights,
and to ask ourselves what would be deficient about the resulting theory. In
a previous paper (Greaves, 2004), I suggested that such a theory would be
deficient in exactly two respects: it could not answer either of the following.

2Deterministic theories, where the agent is ignorant of the future because ignorant of
the initial conditions, present a third type of case. Examples of this third type include
classical statistical mechanics, and Bohmian mechanics. For simplicity, I will omit such
cases from the discussion of this paper. I take it that the special probability-related
problems that are supposed to plague the Everett interpretation will have been solved
if we can show that QME can provide an account of probability as satisfactory as that
available to QMS.

The term ‘weighted branching universe’, and the distinction betweeen a ‘weighted
branching universe’ and a ‘minimal branching universe’, was introduced by David Wallace
(unpublished work). I am grateful to Wayne Myrvold for emphasizing the importance, for
the purpose of seeing the analogies between Everettian quantum mechanics and a chance
theory, of this distinction between weighted branching universes in general and Everettian
quantum mechanics in particular. My presentation of the problem (with which he may or
may not agree) draws heavily on Myrvold’s suggestions.
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The Practical Problem: How are we rationally to act, if we interpret
quantum mechanics along Everettian lines? Suppose we are faced with
a choice between, say, disaster on the spin-up branch and disaster on
the spin-down branch. Given only that, whichever choice we make,
there will be a disaster branch and a non-disaster branch, how could
we ever have grounds for choosing?

The Epistemic Problem: How can we justify believing the theory on the
basis of our empirical evidence, if we interpret quantum mechanics
along Everettian lines? Given only that the theory predicted that the
evidence that we have in fact observed would occur on some branch
(and that the same is true of every other ‘possible’ string of evidence),
how can we reasonably take our evidence to confirm the theory?

It is crucial to note that the same two problems would crop up in a
stochastic theory that was stripped of its measure over possibilities (that
is, in an indeterministic theory that was not a chance theory). It would be
difficult to choose between disaster on spin-up and disaster on spin-down if
one was told only that both spin-up and spin-down were possible; it would
be difficult to take one’s evidence to confirm one’s theory if the theory pre-
dicted only that that evidence (along with every other string of evidence)
was possible. But we normally think that admitting a chance measure over
alternative possibilities can solve these problems: Choose disaster on spin-
up iff spin-up has a lower chance of occurring than spin-down. Take your
evidence to confirm your theory iff your theory predicted that evidence with
high chance.3 The worry for Everettian quantum mechanics, then, is that
the analogous moves may make no sense (or make less sense, or be less jus-
tifiable) if we replace ‘chance’ with ‘branch weight’, and replace ‘alternative
possibilities’ with ‘coexisting branches’. That is why Everettian quantum
mechanics has a prima facie problem with probability.

1.2 Solving the Practical Problem

The rationality-based program brings decision theory4 to bear on the Practi-
cal Problem. Consider the set of all ‘quantum bets’: assignments of ‘rewards’
(things the agent cares about, e.g. monetary reward, ice cream, nuclear dis-
aster) to Everettian branches. Expanding on an original suggestion by David

3I simplify. A more refined account of empirical confirmation will be used in section 3.
4The present section contains only a rather loose sketch of the decision-theoretic claims

required to deal with chance theories and weighted branching theories. A more precise
account will be given in section 2.
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Deutsch (1999), David Wallace has argued (in several papers, e.g. (2003),
(2005c)) for the following claim:

(MEUB) Maximization of expected utility; branching case. The ra-
tional agent’s preferences over branching bets can be represented by a
utility function U on rewards-on-branches and a probability measure
p over branches, such that, for any two bets a, b, the agent prefers a
to b iff EU(a) > EU(b), where the expected utility EU(a) of a bet a
is given by

EU(a) :=
∑

s∈S

p(s) · U(a(s)). (1)

Call p the decision-theoretic branch measure. (We follow Savage (1972)
in representing an act as a function: in this case, a function from branches
to rewards.)

(MEUB) secures the existence of some probability measure p over
branches, but it does not say anything about what that measure should
be. Deutsch and Wallace further argue for the following quantitative claim:

(PE) Probability constraint: Everettian case. Conditional on an as-
sumption that Everettian quantum mechanics is true, the decision-
theoretic branch measure p for any rational agent is numerically equal
to the Everettian branch weight measure.

This claim, if true, goes a long way towards putting Everettian QM
on the same footing as a chance theory as far as the Practical Problem is
concerned.5 This is because the best way we have to precisify the intuitive
advice ‘choose disaster on spin-up iff spin-up has a lower chance of occurring
than spin-down’ is to make the analogous decision-theoretic claims for the
case of a chance theory:

(MEUI) Maximization of expected utility; indeterministic case. The
rational agent’s preferences over indeterministic bets can be repre-
sented by a utility function U on rewards-on-possible-outcomes and
a probability measure p over possible outcomes, such that, for any
two bets a, b, the agent prefers a to b iff EU(a) > EU(b), where the
expected utility EU(a) of a bet a is given by

EU(a) :=
∑

s∈S

p(s) · U(a(s)). (2)

5Why not ‘all the way’? Because the claims (MEUB) and (PE) need to be generalized
slightly before they can actually be applied to realistic cases; again, see section 2.
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(PC) Probability constraint; chance case. Conditional on an assump-
tion that a given chance theory is true, the decision-theoretic probabil-
ity measure p for any rational agent is numerically equal to the chance
measure given by the theory in question.

The conditional claim — the claim that if the Deutsch-Wallace claims
(MEUB) and (PE) are as well-justified as the analogous claims (MEUI)
and (PC) then the Everettian is no worse off than (say) the GRW theorist
vis-a-vis the Practical Problem — is relatively uncontentious. The con-
tentious claim is that (MEUB) and (PE) are as well-justified as (MEUI)
and (PC). This claim has been defended extensively by Wallace in the pa-
pers already cited. I will have a little more to say about it below; for the
most part, however, my approach will be to take this claim for granted — at
least for the sake of argument — since my current interest is in examining
the question of whether, even if true, it is enough.6

The (main) reason that (MEUB) and (PE) may not be enough is
obvious, in the light of our above discussion of what we require from ‘physical
probability’: we have so far said nothing at all about the Epistemic Problem.
There is thus the danger that, while we would know how rationally to act
if we had (somehow!) come to believe that QME was true, we can have no
empirical justification for believing QME in the first place.

I will say more about this problem below. First, we need to distinguish
two ways one might think about branching universes.

1.3 Thinking about branching: ‘subjective uncertainty’ and

‘objective determinism’

Consider an agent who knows that she is in a branching universe, and that
her branch is about to split. She therefore knows that, very soon, there will
be two (or more) copies of her (along with the rest of her world). It will be
possible for different things to happen on the two branches. For example,
suppose that a pointer swings to point at the words ‘spin-up’ on one branch,
while the other branch contains a pointer pointing at ‘spin-down’, and that
our (pre-splitting) agent knows this too.

How should this agent, prior to the splitting, describe the future of her
branch? There seem to be two prima facie possibilities:

6 Wallace actually makes a stronger claim: that (PE) is more defensible than (PC)
(e.g. (2005a), section 3.6). A similar claim has been made by Simon Saunders (2005). I
am skeptical of this stronger claim, but I won’t discuss it in this paper. I am exclusively
interested, here, in the question of whether or not Everettian probability is in at least as

good a shape as, say, probability in GRW.
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‘Subjective uncertainty’ (SU) semantics. ‘X might happen’ is true iff
X happens on some branch. So, in the example under consideration,
spin-up might happen, and spin-down might happen. (It is not the
case that spin-up-and-spin-down might happen, since that happens on
no branch: there is a distinction between ‘X ∧ Y might happen’ on
the one hand, and ‘X might happen ∧ Y might happen’ on the other.)

‘Objective-deterministic’ (OD) semantics. ‘X will happen’ is true iff
X happens on some branch. So, in the example under consideration,
spin-up will happen, and spin-down will happen. (It is not the case
that spin-up-and-spin-down will happen, since that happens on no
branch: there is a distinction between ‘X ∧ Y will happen’ on the one
hand, and ‘X will happen ∧ Y will happen’ on the other.)

Note that on the SU semantics but not on the OD semantics, it makes
sense for the agent to say that she is uncertain about whether or not spin-
up will happen. According to the SU semantics, spin-up might happen and
spin-down might happen, but it is not the case that both will happen; since
the agent knows all this, she must be uncertain about which outcome will
happen. According to the OD semantics, on the other hand, the agent knows
that spin-up will (certainly) happen, and that spin-down will (certainly)
happen, so there is nothing for her to be uncertain about. This will be
crucial in our discussion of the Epistemic Problem.

Which is the right semantics? Well: all are agreed that the ‘OD’ seman-
tics is a viable option. The disagreement is over whether or not the ‘SU’
semantics is also a viable option. This is an important question, but this,
too, is a debate that the present paper will not enter.7

The relevance of the SU/OD debate to the present paper is the follow-
ing. While there is little consensus on the question of whether or not the
subjective-uncertainty semantics is viable, there is a fairly widespread con-
sensus, shared by both ‘Everettians’ and ‘anti-Everettians’ alike, that the
Everett interpretation is defensible if and only if SU is viable. Thus, ‘Ev-
erettians’ tend to argue by defending the SU semantics and showing how,
given that semantics, one can defend the Everett interpretation. ‘Anti-
Everettians’ tend not to dispute the claim that if the SU semantics were

7A brief guide to the literature on this debate: The first argument in defense of SU
was given by Simon Saunders (1998). In (Greaves, 2004), I argued against SU and against
Saunders’ argument. David Wallace (2005b) gives a different argument in favor of SU,
based on considerations of interpretive charity. Peter Lewis (2006) argues against Wallace.
For the record, I am convinced by (a close cousin of) Wallace’s argument, so I am no longer
opposed to the use of the SU semantics.
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available, then the Everett interpretation could be defended; they argue that
the SU semantics is incoherent and that, in the absence of that semantics,
one cannot defend the Everett interpretation.8

I think that this consensus is mistaken: I think that the Everett inter-
pretation can be defended whether or not the SU semantics is viable. In
a previous paper (Greaves, 2004), I argued for this position in the case of
the Practical Problem: I argued, that is, that the decision-theoretic account
of Everettian branch weights developed by Deutsch and Wallace is just as
defensible on the OD semantics as on the SU semantics. The purpose of the
present paper is to extend the claim to the Epistemic Problem: to argue,
that is, that if the Practical Problem can indeed be solved in this way, then
the Epistemic Problem can be solved on the OD semantics, as well as on
the SU semantics.

Since agreement that the theory can be defended if the SU semantics is
viable is relatively widespread, the more contentious claim is the claim that
it can be defended without relying on the SU semantics. That is the claim
I will try to establish in this paper. If I am right, then we need not get
bogged down in the ‘semantic dispute’ if our only concern is the question
of whether or not Everettian quantum mechanics is an acceptable physical
theory. The two issues — physics and semantics — can be disentangled. We
can first agree that the theory is acceptable, and afterwards discuss how we
should talk about it. Or so I claim.

The rhetorical aims of the present paper are therefore as follows. I aim
to convince ‘Everettians’ (more precisely: those Everettians who agree with
the above consensus) that they have got the logic of the defense wrong: SU
may happen to be true, but the theory would be perfectly defensible even
if SU were false. It is therefore misleading to argue that SU is true and
that therefore the theory’s problems with probability can be solved. And I
aim to convince ‘non-Everettians’ that, insofar as their reason for rejecting
an Everett interpretation relied on an assumption that the epistemic prob-

8Thus David Baker, for example, writes in a recent paper:

The most significant goal of [the decision-theoretic approach to Everettian
probability] is . . . to show that Everettian quantum mechanics is empiri-
cally verifiable. But it is not obvious how the “predictions” of the decision-
theoretic approach, which take the form of normative prescriptions dictating
how much we should care about particular outcomes*, could ever be con-
firmed or disconfirmed by experimental results.

*[Baker’s footnote:] This is not true of the SU version of Everett, of course.
But as I have shown, if SU has a leg to stand on it is at least an extremely
weak position compared with [OD]. (Baker, 2006)
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lem cannot be solved because SU is incoherent, they should reconsider: the
epistemic problem can be solved even if SU is incoherent.

Structure of the paper. The structure of the remainder of the paper
is as follows. In section 2, I note that we need to generalize our decision-
theoretic framework before we have a fully general solution even to the
Practical Problem. I carry out the required generalization, and I suggest
(briefly!) how the defense of the more general framework might follow from
the defenses of the special framework that are already in the literature. It is
this more general framework that we will need to use, in order to discuss the
Epistemic Problem. In section 3, I argue that a Bayesian model of the Epis-
temic Problem is adequate, and I review the standard Bayesian account of
empirical confirmation outside of the context of branching-universe theories.
I sketch the way in which this account would need to generalize to the ‘gen-
eral case’ in which both branching-universe and indeterministic theories are
under consideration, in order for empirical confirmation to work in the way
the Everettian requires. Section 4 discusses and rejects an initially plausible
alternative updating policy for the branching-universe case that, if correct,
would create havoc. In section 5, I argue that that generalization required
to place Everettian quantum mechanics on the same epistemic footing as
stochastic quantum mechanics is indeed the correct one; my strategy here
will be to argue that the usual justifications for updating beliefs by condi-
tionalization support the belief-updating policy that the Everettian requires
in the branching-universe case. In section 6, I consider and respond to a
possible objection to my account. Section 7 is the conclusion.

2 An integrated decision theory

In presentations of the rationality-based approach to date, and in the sketch
given in section 1 above, the decision theory presented has assumed that
the agent is certain she lives in a universe governed by Everettian quantum
mechanics, and just has to decide how she should go about living her life,
under that assumption.

This is a useful idealization for the purposes of getting started on the
Practical Problem, but it is not general enough to provide a full solution
even to that problem. No-one (or: no-one rational!) is ever actually certain
of any given physical theory. The human predicament is one of making
decisions without knowing for sure what the chances, or the branch weights,
are. What we really need to know, therefore, is how a rational agent whose
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credences are distributed thus-and-so between such-and-such theories should
act.

The inadequacy of the idealization to a single physical theory becomes
even more obvious when our concern is the Epistemic Problem. To investi-
gate the Epistemic Problem at all, we must model an agent who has nonzero
credence in several theories, of which QME is just one. There is no question
of how the agent should manage her credences in theories, on the assumption
that she already has credence 1 in some particular theory: she will be stuck
with having credence 1 in that theory until the day she dies. What we need
to know is how credences distributed non-trivially between more than one
theory evolve in time, in response to evidence. The first task of this paper
is therefore to sketch that more general decision-theoretic framework.

2.1 Histories, branches, centered worlds, worlds

Consider a ‘general case’: the case of agent who has nonzero credence that
her world is a non-branching one, and non-zero credence that her world is a
branching multiverse. Then her set of epistemic possibilities might have the
structure illustrated in Figure 1; in the example illustrated, she is uncertain
which of the possible worlds w1, . . . , w5 is actual.

t0

t1

t2

t

w1 w2 w3 w4 w5

h1 h2 h3
h
1
4

h
2
4

h
3
4

h
4
4

h
1
5

h
2
5

h
3
5

Figure 1: A ‘general case’. Each tree structure (including the trivial ‘trees’ on
the left) represents a single possible world. The agent’s epistemic possibilities
include both non-branching possible worlds (w1, w2, w3) and branching possible
worlds (w4, w5).

But there is more that our agent is uncertain about. Suppose the time
now is t1. Conditional on the assumption that she is in a particular branch-
ing multiverse, w4 or w5, our agent will still, in general, be uncertain as
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to which branch at t1 she is in, since each of these multiverses contains
two branches at time t1. (This is self-locating uncertainty, but self-locating
uncertainty is uncertainty nonetheless.)

What of the future? Consider some time t′ > t. Let t′ be far enough
in the future that, if our agent is in a branching world, her branch will
undergo splitting between t and t′. Then, there is more than one branch-
at-t′ that bears the ‘is a future of’ relation to our agent’s branch-at-t; what
is Alice’s attitude to these futures? Well: if we were working with the SU
semantics, we would say that Alice’s uncertainty, at t, extended to which
of the branches b1, b2 she will be in at t′. But we are eschewing the SU
semantics. We aim to model the Practical and Epistemic problems on the
assumption that this sort of uncertainty is incoherent. So we will not say
that, even conditional on the assumption that Alice knows which branch she
is now in, she is uncertain about which branch she will be in in the future.
In our language, rather (that is, on the OD semantics), if Alice knew which
branch she is on now, she would have no uncertainty about the future either.

We will need to regiment our talk of possible worlds, centered worlds
and credence functions; so, let us formalize all this.

• We start from a set of histories,

H,

taken as primitive. (Heuristically: a history h ∈ H is a complete
future-directed path through a branching tree. We can represent this
by putting history labels h1, h2 etc. at the ‘future end’ of each branch;
see figure 1. In the example depicted,

H = {h1, h2, h3, h
1
4, h

2
4, h

3
4, h

4
4, h

1
5, h

2
5, h

3
5}.)

• Admit the following (symmetric, reflexive, transitive) binary relation
on H (also taken as primitive): the ‘same world as’ relation,

SW ⊆ H×H.

(In our example, this relation is generated by taking

SW (h1
4, h

2
4), SW (h1

4, h
3
4), SW (h1

4, h
4
4);

SW (h1
5, h

2
5), SW (h1

5, h
3
5),

and closing under symmetry, reflexivity and transitivity.)
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• Similarly, for any time t, let there be a ‘same branch at t’ equivalence
relation on H (also an equivalence relation).

(In our example, for time t1, SWt1 is generated by:

SBt1(h
1
4, h

2
4), SBt1(h

3
4, h

4
4), SBt1(h

1
5, h

2
5).)

• Place the following constraint on each ‘same branch at t’ relation:

∀h1, h2 ∈ H,∀t, SBt(h1, h2) only if SW (h1, h2). (3)

(Two histories cannot be in the same branch at any time t unless they
are in the same world.)

• Define the set W of possible worlds and, for each time t, the set WC
t

of centered worlds at t, as follows:

W := H/SW ; (4)

WC
t := H/SBt. (5)

(The set of possible worlds, W, is formed by taking the set of his-
tories, and quotienting by the ‘same world as’ relation. The set of
centered worlds at t, WC

t , is formed by taking the set of histories, and
quotienting by the ‘same branch at t’ relation.)

In our example:

W =
{

{h1}, {h2}, {h3}, {h
1
4, h

2
4, h

3
4, h

4
4}, {h

1
5, h

2
5, h

3
5},

}

;

WC
t1

=
{

{h1}, {h2}, {h3}, {h
1
4, h

2
4}, {h

3
4, h

4
4}, {h

1
5, h

2
5}, {h

3
5}

}

.

‘Is in the future of’ relation. For times t, t′ with t′ > t, say that a
centered world w′ ∈ WC

t′ is in the future of a centered world w ∈ WC
t iff,

regarded as a set of histories, w′ is a subset of w.9

Credence function. The agent’s epistemic state at time t is represented
by a probability function Crt on WC

t . (The agent is uncertain about which
possible world is actual, and, conditional on the assumption that she is in
some particular branching world, she is uncertain about which branch within
that world she is in.)

9One may want to amend this definition if one is considering branching universes in
which branches may recombine, as well as split. I will not consider such universes, since
they do not (in practice) fit the Everettian case, and they introduce complications.
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2.2 Maximization of expected utility

Next, let us sketch our integrated decision theory. We proceed in two stages:
first (in the present section), we make a maximization-of-expected-utility
claim; second (in section 2.3), we place quantitative constraints on the prob-
ability measure with respect to which the expectation value (for the purposes
of maximizing expected utility) is to be taken.

As in the decision theory familiar from Savage, we have the following
notions of a set of consequences and a utility function:

Consequences. There is a set C of consequences, representing the locus
of value to the agent.

Utility function. The agent has a utility function U : C → R on the
set of consequences, representing the degree to which the agent values each
consequence.

At this point, we must make a crucial decision regarding how the Savage
framework is to be applied, when some of the epistemically possible worlds
are branching multiverses. The key question is what, in our framework
of centered worlds and so forth, we should identify with Savage’s ‘States’.
There seem to be two options:

1. For a decision taken at time t, take the set of States to be the set WC
t

of centered worlds at time t.

2. Take the set of States to be the set H of histories.

When there are no branching multiverses on the table, these two options
coincide; so, our existing usage of decision theory fails to commit us to one
or the other. Option (1) is the generalization that follows if we insist on
hanging on to Savage’s idea that the set of States must be the locus of
uncertainty. Option (2) is the generalization that follows if we insist on
hanging on to the idea that the set of consequences must be straightforward
things like ‘I get an ice-cream’ or ‘There is nuclear war’, rather than things
like ‘A branching multiverse with branches with such-and-such weights is
realized to my future; on branch i I get an ice-cream; on branch j there is a
nuclear war; . . . ’. What to do?

It is absolutely crucial to the Everettian program that option (2), not
option (1), is the right extension. (2) is the option that leads to the strictly
stronger decision theory, according to which branch weights can function,

12



for all practical purposes, just like chances. If only option (1) is defensible,
the Everett interpretation is sunk.

Why think that option (2) is the right extension? Indeed, why think
that it has anything going for it at all? Surely (a skeptic might rhetorically
ask), the idea that the probability measure should be quantifying uncertainty
is far more fundamental than the idea that the idea that the Consequences
should have short descriptions in language familiar to the man on the street?

This challenge certainly has some force, and a full defense of option (2)
lies well outside the scope of this paper. Here I will only make the following
brief remarks towards its defense. Suppose one has already accepted that, in
a case of uncertainty in which no branching worlds are under consideration,
Savage was right (i.e. one should maximize expected utility with respect to
some p, U , where p is a measure over the set of possible [centered] worlds).
This much is relatively uncontentious. Suppose further that one has also
accepted that, in a hypothetical case in which the agent was certain that
she lives in an Everettian multiverse, decision theory should be applied in
the way Deutsch and Wallace suggest (i.e. p should be a measure over
possible future branches, not over possible worlds). That this is true given
the SU semantics has been persuasively argued by Wallace; for defense of
the claim that it remains true even on the OD semantics, see (Greaves, 2004)
and (Wallace, 2005c).10 If those two suppositions are granted, then it seems
rather implausible that, in the general case, one should revert to insisting
that the probability measure be over present centered worlds, rather than
over histories or over future centered worlds. It seems far more plausible that
the same sorts of considerations that defend Savage in the non-branching
case, and Deutsch and Wallace in the Everettian case, will combine to defend
option (2) in the general case. In this sense, the framework I have proposed
above strikes me as an innocuous extension of claims that have been defended
elsewhere in the literature.

This is (to say the least) hardly a knock-down argument in defense of
the decision theory I plan to use. Perhaps the reader is unconvinced, either
by my claim that the extension of option (2) from the pure branching case
to the general case is innocuous, or by the claim that Deutsch and Wallace
are justified in using (2) in the pure branching case. If so, let us put that

10The basic idea behind the latter claim is: conditional on the assumption that she
will have multiple successors in parallel future branches, a decision-maker will care about
all her futures; but sometimes the interests of her various future selves will conflict; the
decision-maker must therefore weigh up the interests of her various successors against
one another; the way to achieve this is to maximize expected utility with respect to a
normalized measure over parallel coexisting branches.
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dispute aside for the time being, since it is a dispute about whether or not
the Practical Problem can be solved. In this paper, our project is to examine
the conditional claim: if the Practical Problem can be solved along the lines
proposed by the rationality-based program, then a solution to the Epistemic
Problem follows. We will therefore take for granted the claim that option
(2) is the right way to build a decision theory for the general case — at least
for the sake of argument, at least for the time being — and investigate what
follows from it.

On with building our general-case decision theory, then:

States. The set of states is the set of histories, H.

Acts. An act is represented by a function a : H → C. Since realistic acts
will involve receiving a reward at some particular time t, one can usually
represent an act (instead) as a function from the set of centered worlds at
some particular (future) time t to C: a : WC

t → C.

Expected utility. The expected utility of an act a : H → C with respect
to a probability measure p over H is given by:

EUp(a) =
∑

h∈H

p(h) · U(a(h)). (6)

With these definitions in hand, we are ready to state our core normative
claim:

Maximization of expected utility; general case (MEUG). For any
rational agent and any time t, there exists a probability measure Crt on H
and a utility function U : C → R such that, for any two actions a1, a2, the
agent weakly prefers (at t) a1 to a2 iff the expected utility of a1, calculated
with respect to Crt, is at least as high as that of a2:

a1 �t a2 iff EU
Crt

(a1) ≥ EU
Crt

(a2). (7)

Say that Crt is the agent’s quasi-credence function at time t. (The relation-
ship of Crt (a normalized measure on H) to the agent’s genuine credence
function at t, Crt (a normalized measure on WC

t ), will be discussed below.)
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2.3 Quantitative constraints on the quasi-credence function

(MEUG) states only that there must be some probability measure (‘quasi-
credence function’) over H with respect to which the agent maximizes ex-
pected utility. We wish to impose some stronger constraints: the general-
izations of our ‘Principal Principles’ (PC) and (PE) to the general case.

(PC): Principal Principle (chance). If E is any admissible11 proposi-
tion that entails that there is a chance x that A occurs with branch
weight 1, and if the agent has no inadmissible information at t, then

Crt(A|E) = x. (8)

(PW): Principal Principle (weights). If E is any proposition that en-
tails that A occurs with branch weight x, then

Crt(A|E) = x. (9)

From these two principles, one can derive the following two (heuristically
useful) special cases.

• Let Tnb ∧ S be the proposition that a particular non-branching, inde-
terministic, chance theory Tnb is true and that the present state of the
world is S. Let ChTnb,S(A) be the chance that theory Tnb assigns to
event A, given initial conditions S. Then, for any proposition A,

Crt(A|Tnb ∧ S) = ChTnb,S(A). (10)

• Let Tb ∧ S be the proposition that a particular weighted branching
theory Tb is true and that the present state of the agent’s branch is S.
Let WTb,S(A) be the branch weight that theory Tb assigns to event A,
given initial conditions S. Then, for any proposition A,

Crt(A|Tb ∧ S) = WTb,S(A). (11)

Next, let us define ‘conditional credence function’ and ‘caring measure’
as follows:

11I ignore a number of subtleties concerning the notion of admissibility, since they are
orthogonal to the concerns of the present paper. The reference to admissibility can be done
away with at the expense of (arguably) making the Principal Principle less user-friendly:
see, e.g., (Hall, 2004).

15



• The agent’s credence function at t conditional on Tnb ∧S is defined by

Crt(·|Tnb ∧ S) ≡ Crt(·|Tnb ∧ S).

• The agent’s caring measure at t given Tb ∧ S is defined by

Cart,Tb,S(·) := Crt(·|Tb ∧ S).

Then the above normative constraints have the following implications:
a rational agent’s credence function conditional on Tnb ∧S, Crt(·|Tnb ∧S) ≡
Crt(·|Tnb ∧ S), must be equal to the chance function given by the theory
Tnb for possible histories consistent with present state S. A rational agent’s
caring measure given Tb ∧S, Cart,Tb,S , is equal to the weight function given
by the theory Tb for branches in the future of a branch in state S. (In subse-
quent sections, I will drop explicit mention of the state S, for convenience.)

By way of illustration: note that these constraints ensure, in particular,
that in an idealized case in which the agent is certain that the actual world
is quantum-mechanical and that the initial state of a system about to be
measured is |ψ〉, she would accept and reject bets as if she had credence
|〈φi|ψ〉|

2 that outcome |φi〉 would occur, regardless of her views as to whether
it is a stochastic or a branching version of QM that is true. Thus, we have
captured, in our more general framework, Deutsch’s claim that ‘the rational
agent [who thinks that QME is true] makes decisions as if [the Born rule]
were true’ (Deutsch, 1999).

3 A Bayesian account of empirical confirmation

Suppose that the decision theory sketched in section 2 is defensible; then
the Practical Problem is solved. What now of the Epistemic Problem?

The Epistemic Problem (recall) is the threat that, on the Everett inter-
pretation, the sorts of empirical data that we ordinarily take to be evidence
for quantum mechanics can no longer rationally be regarded as evidence in
favor of the theory.

Let us be more precise about this threat. A large part of our empirical
evidence for quantum mechanics takes the following form:

Matching: In experiments that have been repeated many times, observed
relative frequencies have roughly matched the single-case chances pre-
dicted by quantum mechanics for experiments of that type.
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I take the core Epistemic Problem to be the task of explaining why Matching
still counts as evidence for quantum mechanics when quantum mechanics is
understood as a branching-universe theory, rather than a stochastic the-
ory.12 The prima facie problem is that whereas, in the stochastic case, we
take Matching to confirm quantum mechanics because stochastic quantum
mechanics (QMS) predicted that Matching would occur with high chance,
Everettian quantum mechanics (QME) (‘merely’?) says that Matching will
occur with high branch weight. Meanwhile, if Everettian QM is true, there
(certainly!) also exist branches on which Matching does not occur. To be
sure, those other branches have low weight — but, the worry continues, what
of that? They are still real. Our problem is that it is unclear whether, or
why, observing high-weight outcomes should count as confirming a theory.

Adequacy of a Bayesian approach. Before attempting to solve this
problem, it is worth reminding ourselves of how empirical data is supposed
to support belief in the theory in a non-branching case.

Bayesian epistemology offers a systematic account of belief revision. This
account is subject to a variety of criticisms, mainly that all the interesting
epistemological questions are shifted to the question of which priors are ra-
tional. Be this as it may, there is at least one question that is well handled
by the Bayesian framework: the question of the relevance of relative fre-
quency data to theory confirmation. I therefore take it that, if the Bayesian
account yields the result that Matching confirms Everettian quantum me-
chanics just as much as it confirms stochastic quantum mechanics, then the
Epistemic Problem will be solved. My project is therefore to show that the
Bayesian account, when properly applied to the Everettian case, does indeed
yield that result.

3.1 The Bayesian framework

Our first task is to review the standard Bayesian framework, and its expla-
nation of the epistemic relevance of Matching in the non-branching case.

The following four features are key to the Bayesian account of this case:

• Probabilism holds. That is, an ideally rational epistemic agent has,
at any given time, a well-defined probability function on the space of

12Note: the Epistemic Problem has nothing to do with the issue of gaining empiri-
cal evidence that can preferentially confirm QME relative to other versions of quantum

mechanics.
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possible worlds, representing the agent’s degrees of belief (so, we call
the probability function a ‘credence function’).

• Empirical evidence comes in the form of subsets of the set of all possible
worlds (the interpretation being that the agent has just learnt that the
actual world is a member of the subset in question).

• On receiving a given piece of empirical evidence, the agent updates
her beliefs by conditionalizing on that evidence.

• Empirical confirmation of a theory consists in the increase of degree
of belief in that theory as a result of conditionalizing on evidence.

To explain why Matching constitutes empirical evidence for quantum
mechanics according to the Bayesian account, it suffices to consider the
following simple scenario. We begin with an agent, Alice, at time t0. Al-
ice is entertaining two possible theories of the world. One is our non-
branching, stochastic version of quantum mechanics (QMS), according to
which measurement outcomes are uncontroversially assigned genuine non-
trivial chances. The other is an alternative, non-quantum theory that I will
simply label T .13 So, we have:

Alice’s candidate theories. The set of theories that Alice is considering
is given by T ≡ {T,QMS}.

Alice is about to perform an experiment that has n possible outcomes,
{Ei} : i = 1, . . . , n:

Possible outcomes of the experiment. The set of possible outcomes is
given by O ≡ {E1, . . . , En}.

Let there be one outcome, E1 say, that has the following feature: the
chance assigned to E1 by QMS is significantly higher than Alice’s credence,
conditional on T , that E1 will be the outcome that actually occurs.

Note that, if the experiment in question happens to be a relative-frequency
experiment, then E1 could be the proposition that the observed relative fre-
quency approximately matches the single-case chances predicted by QMS

13
T is whatever Alice thinks is true, conditional on the assumption that QMS is false.

It is a ‘theory’ only in some rather loose sense of the term; it presumably resembles some
long disjunction of non-quantum theories more closely than it resembles a single physical
theory such as quantum mechanics. T is best thought of as a heterogeneous collection of
possible worlds, over which the agent has some unspecified but (in the limit of idealization)
well-defined conditional credence function.
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(that is, the proposition that Alice’s experiment yields an instance of Match-
ing), and E2 just the negation of E1. But this will not be essential to our
argument.

Next, Alice will perform her experiment. There are now 2n possibilities
that our model must treat as distinct if it is to handle the issue of theory
confirmation. Either QMS is true, or T is true. And, within each of these
two cases, there are n further possibilities: the outcome might be any one
of the possibilities {E1, . . . , En}. To make the decision theory more man-
ageable, let us coarse-grain our history set so that each of these possibilities
corresponds to just one ‘history’14, and, with slight abuse of terminology,
let us call our coarse-grained histories ‘possible worlds’:

Possible worlds. The set W of possible worlds is given by

W ≡ {T ∧ E1, . . . , T ∧ En,QMS ∧ E1, . . . ,QMS ∧ En}.

Alice’s credence function at time t0. Since probabilism holds, Alice
has, at time t0, some well-defined credence function Crt0 over the set W of
possible worlds. Since Alice at time t0 respects the Principal Principle with
respect to the theory QMS (and we assume that she has no ‘inadmissible in-
formation’), her conditional degrees of belief Crt0(·|QMS) equal the chances
given by the theory15:

Crt0(Ei|QMS) = ChQMS(Ei). (12)

Person-stages. It will be useful to talk in terms of person-stages. We will
usually have no need to distinguish between the person-stages in the various
possible worlds at t0. So, I will often write Alice0 for the person-stage
that represents Alice at time t0, regardless of which world is supposed real.
When discussing what goes on at t1, we will sometimes need to distinguish
between the various person-stages that may exist at that time. So, I will
write AliceQMS,Ei

1 for the person-stage in possible world QMS ∧ Ei at time
t1, and similarly for t2. (See figure 2.)

14This is a standard move. One typically works with ‘small-world’ decision problems,
not with the ‘grand-world’ decision problem in which the set of states is given by the fully
fine-grained set of histories, or ‘possible worlds’ in the usual philosophers’ sense.

15This is required in order to ensure that observing high-chance outcomes confirms the
theory for our agent, rather than observing outcomes that just happened to be given high
conditional credence Crt0(·|QMS) by our agent’s initial credence function.
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Figure 2: A diagrammatic representation of the Bayesian model of confirmation,
when Alice is entertaining theories QMS (stochastic quantum mechanics) and T
(her ‘default theory’) only. Each of the 2n possible worlds in our model is rep-
resented by a timeline running up the page (although only four have been drawn
here, for simplicity); the three person-stages that exist in each possible world at
the three times t0, t1, t2 we are considering, plus the measurement event and the
observation event (Alice’s looking at the apparatus), are represented by nodes on
the corresponding timeline. The nodes representing each person-stage contain two
pieces of information: the name we are giving to that person-stage (e.g. AliceT,E1

0

for the stage of Alice in possible world T ∧ E1 that exists at time t0), and the
epistemic state of that person-stage (represented by a probability function on WC

t ,
e.g. Crt0 ). At time t0, Alice is in the epistemic state Crt0 , regardless of which
theory is true, and of which outcome is going to occur. Similarly, at time t1, Alice
is in epistemic state Crt1 in all possible worlds. At time t2, Alice is either one of
the epistemic states CrEi

t2
(depending on which outcome Ei has occurred in her

possible world).
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Credence function Crt1: after the measurement has taken place,
but before the result(s) has/have been observed. At time tmeas,
the measurement occurs; by t1 it is complete. Since the result has not yet
been observed, Alice has received no information between t0 and t1; we must
therefore insist that all (possible) t1-person-stages are in the same epistemic
state as one another. So, the epistemic situation at time t1 can be fully
described by a single credence function Crt1. Further, and again because
Alice has received no information between t0 and t1, we should insist that
her epistemic state has not changed during this time interval: Crt1 = Crt0 .
That is, we should insist that Alice satisfies a reflection condition. (Since
Crt0 and Crt1 are thus assumed equal, the distinction between the two
plays no interesting role in the present account. It is mentioned here only
to facilitate later comparison to the general case.)

Credence functions {Cri
t2
}: after the result(s) has/have been ob-

served. A little while later (at time tobs), Alice gets curious, and decides
actually to look at the measuring apparatus. In each possible world, Alice
sees some particular outcome Ei. Depending on which outcome she sees,
she may change her epistemic state. Since it is possible for her to move to
different epistemic states depending on which outcome she sees, we will in
general need n credence functions to describe the epistemic situation at time
t2: we call these {CrEi

t2
} : i = 1, . . . , n. Again, these credence functions are

probability functions on the set W of possible worlds.

Rational belief-updating. Rationality places constraints on how the
posterior credence functions {CrEi

t2
} may be related to Crt1. According

to the Bayesian account, rational belief-updating is by conditionalization:

CrEi

t2
(·) = Crt1(·|Ei), (13)

for each possible outcome Ei.

The term ‘conditionalization’ will be in danger of ambiguity later in our
discussion. We will therefore refer to the updating policy (13) for cases in
which no branching-universe theories are under consideration as Minimal
Conditionalization. (So: by stipulation, Minimal Conditionalization just
does not apply to cases in which one or more branching-universe theories
is under consideration, and we have as yet said nothing about how rational
belief-updating proceeds in such a ‘general case’.)
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In particular, if Alice updates by Minimal Conditionalization, then her
possible credences at time t2 in her two candidate theories are given by

CrEi

t2
(QMS) = Crt1(QMS|Ei);

CrEi

t2
(T ) = Crt1(T |Ei).

It is easy to see that, given this updating rule, observing E1 (recall: by
stipulation, E1 is an outcome with the feature that the chance assigned to
E1 by QMS is greater than Alice’s prior credence, conditional on T , that E1

will occur) will lead Alice to increase her credence in QMS at the expense of
her credence in T. Meanwhile, observing E2 will lead Alice to decrease her
credence in QMS, increasing her credence in T to compensate:

CrE1
t2

(QMS) > Crt1(QMS);

CrE1
t2

(T ) < Crt1(T );

CrE2
t2

(QMS) < Crt1(QMS);

CrE2
t2

(T ) > Crt1(T ).

That is, according to the Bayesian account, observing E1 empirically con-
firms QMS (and disconfirms T ), while observing E2 empirically disconfirms
QMS (and confirms T ).

Recall again that, as a special case, E1 might be the proposition that
the relative frequency approximately matches the single-case QMS chances,
and E2 the proposition that it does not. The above account therefore gives
a Bayesian explanation of why, in the non-branching case, Matching counts
as empirical evidence for quantum mechanics. It is time now to turn to the
general case.

3.2 Generalizing the Bayesian framework

The Bayesian framework sketched above must be generalized slightly in
order to handle the question of rational belief-updating when one of the
theories our agent is considering is a branching-universe theory, such as
Everettian QM. This is because we now need to be able to handle the co-
existence of more than one copy of Alice at a give time in a given possible
world. Our next task is to carry out that generalization.

Again, to set up an illustrative toy example, we begin with an agent,
Alice, at time t0. Alice is now entertaining four possible theories of the
world:
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• QMS: a stochastic version of quantum mechanics;

• QME: Everettian quantum mechanics;

• Tnb: Alice’s ‘default non-branching theory’, i.e. whatever Alice thinks
is true if QMS is false but the actual world is non-branching;

• Tb: Alice’s ‘default branching theory’, i.e. whatever Alice thinks is
true if QME is false but the actual world is a branching multiverse.

That is, we now have:

Alice’s candidate theories. The set T of theories that Alice is consider-
ing is given by

T ≡ {Tnb,QMS,Tb,QME}.

Alice performs the same experiment as before, with the same set of
possible outcomes,

O = {E1, . . . , En}.

Her candidate theories say the following things about these outcomes:

• QMS (as before) provides a normalized measure (‘chance function’)
ChQMS over O; we have, in particular,

ChQMS(E1) > Crt0(E1|QMS ∨ Tnb);

ChQMS(E2) < Crt0(E2|QMS ∨ Tnb).

• According to each of Alice’s branching-universe theories (Tb, QME),
there will be n branches at times later than tmeas: for each Ei, there
will be some branch on which Ei occurs. The theory provides a nor-
malized measure (‘weight function’) WQME over O; we stipulate that

WQME(E1) > Cart0,Tb
(E1);

WQME(E2) > Cart0,Tb
(E2).

Again, we simplify the model by coarse-graining our history space, so
that we have 4n histories: Tnb ∧ Ei,QMS ∧ Ei,Tb ∧ Ei,Tb ∧ Ei for each
i ∈ {1, . . . , n}.16 Given that all (coarse-grained) histories in which QME is

16There is a further simplification: we have not bothered to represent parallel branches
that are in the same world as Alice0, but that she is certain she is not on. Such branches are
irrelevant to her decision-making and belief-updating. This move is structurally analogous
to our ‘failure’ to discuss non-branching worlds that are allowed by (say) the non-branching
theory QMS, but that the agent is certain are not actual.
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true are then in the same (coarse-grained) possible world, and similarly for
Tb, there are 2n+ 2 (coarse-grained) possible worlds to consider:

Possible worlds. The set W of possible worlds is given by

W ≡ {Tnb ∧Ei, . . . , Tnb ∧ En,QMS ∧ E1, . . . ,QMS ∧ En,Tb,QME}.

Person-stages. Again, it will be useful to talk in terms of person-stages.
The only new feature in the general case is that there are n person-stages in
each of the branching possible worlds QME,Tb at each time later than tmeas:
for instance, at t1 we have AliceQME,E1

1 , . . . , AliceQME,En

1 , and AliceTb,E1

1 , . . . ,

AliceTb,En

1 . (See figure 3.)

Alice’s credence function at time t0. As before, Alice at t0 has a
credence function Crt0 on the set W of possible worlds. Since Alice respects
the Principal Principle, Crt0 respects the constraints (12) as before.

No assumption is made about the value of Crt0(QME), except that it
lies strictly between 0 and 1. (That is, we are interested in the epistemic dy-
namics of agents who are just barely considering QME, as well as those who
already have fairly high credence in QME. This is important: the present
discussion does not treat only of ‘Everettians’, if by ‘Everettian’ one means
‘agent who has high credence in QME’.17)

Caring measures and the Everettian weight function. In one sense,
our description of Alice’s epistemic state at t0 is now complete: that epis-
temic state is simply Crt0 . However, there are two more objects related
to

17This observation is made in reply to Wallace’s objection that the Bayesian approach
suggested in (Greaves, 2004) involves some sort of illicit presupposition that Everettian
quantum mechanics is true:

Greaves (2004) . . . argues that on the assumption that we live in a branching,

Everettian-style universe, we can construct an analogue of the Bayesian up-
date rule and prove its validity. But it is unclear at best how this strategy can
help us where we are concerned with evidence for the Everett interpretation
itself. (Wallace, 2005a, p.20; first emphasis added)

Wallace’s suggestion here is that, because of the need for this assumption, the Epistemic
Problem cannot be solved without appealing to the SU semantics. My point is that no
such assumption is being made. We are considering a rational agent who has nonzero

credence in the proposition that the world is Everettian one, and asking how such an
agent should manage her beliefs. No assumption that the agent is in fact in an Everettian
multiverse (or that she is not) plays any role in the argument. (This is not to say that
Wallace’s reading of (Greaves, 2004) is unreasonable; I am grateful for the insistence on
clarification.)
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Figure 3: The possible worlds and person-stages relevant to the Bayesian account of updating in a ‘general-case’ scenario,
i.e. a case in which the agent has non-zero credence in branching multiverses as well as in non-branching worlds.



Alice’s psychology at t0 that will turn out to be crucial to the dynamics of
Alice’s credences. These are her ‘caring measures’ for the two branching
multiverses under consideration, Cart0,QME and Cart0,Tb

. Recall that each
caring measure is (mathematically) a probability function over the set of
histories corresponding to the possible world in question.

Mathematics aside, what do these caring measures mean? Well: they
can be given operational significance in terms of rational action choice via
decision theory. In evaluating the decision-theoretic value of a branching
future in a world governed by a particular weighted-branching-universe the-
ory, Alice0 will take the average of utility-on-a-branch over all branches that
are in her future, averaged according to her caring measure for the theory
in question. We are granting (by (PE)) that Cart0,QME is dictated by the
Everettian weight function: ∀Ei ∈ O, Cart0,QME(Ei) = WQME(Ei).

The relevance of Cart0,QME and Cart0,Tb
to Alice’s epistemic dynamics

will be drawn out below (section 5).

The Epistemic Problem. Our ultimate interest, as far as the Epistemic
Problem goes, is in the dymanics of credences in theories. That is, we
are interested in the relationships between the quadruples that describe the
agent’s epistemic states at various times and following observation of various
outcomes:

At t0 : 〈Crt0(Tnb), Crt0(QMS),Crt0(Tb),Crt0(QME)〉;

At t2,having observed Ei : 〈CrEi

t2
(Tnb), Cr

Ei

t2
(QMS),CrEi

t2
(Tb),CrEi

t2
(QME)〉.

The Epistemic Problem is the threat that, under rational updating of
beliefs in the light of observations Ei, the quantities CrEi

t2
(QME) will take

different values than those they would take under Minimal Conditionaliza-
tion if QME were a stochastic theory and the branch weights were chances.

Sufficient condition for solving the Epistemic Problem. The Epis-
temic Problem will be solved if we can show that, under rational belief-
updating, the quantities CrEi

t2
(QME) do evolve from Crt1 in the same way

that the quantities CrEi

t2
(QMS) do (with branch weights playing the role

that chances play for QMS). In that case, we will have explained why ob-
serving outcomes that Everettian quantum mechanics predicted would occur
with high weight (for example, but not necessarily: relative frequencies that
match single-case branch weights) counts as evidence in favor of Everettian
quantum mechanics, just as observing outcomes that a stochastic quantum
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mechanics predicted would occur with high chance (for example, but not
necessarily: relative frequencies that match single-case chances) counts as
evidence in favor of stochastic quantum mechanics.

The task of section 5 will be to argue that this condition is indeed met.
First, however, it is worth investigating in more detail why one might have a
prima facie suspicion that the condition might not be met. The thought here
is that there is a way of extending Minimal Conditionalization to the general
case that both (a) is intuitive, and (b) has that disastrous consequence. I will
call that intuitive extension Naive Conditionalization. We will see, however,
that Naive Conditionalization is implausible for independent reasons.

4 Interlude: Naive Conditionalization in the gen-

eral case

The Epistemic Problem arises because it is not (yet) clear what rationality
constraints can be placed on the posterior credence functions CrEi

t2
. The

natural move is to find an updating policy that is a natural generalization
of Minimal Conditionalization for the general case, defend it as the unique
rational updating policy, and note how Alice’s credences in the various the-
ories at t2 relate to her credences at t0 according to this updating policy.
(Recall that, by stipulation, Minimal Conditionalization itself applies only
to cases in which no branching-universe theories are under consideration.)
However, there is more than one way to do this. The most naively obvious
such policy — ‘Naive Conditionalization’ — yields thoroughly unsatisfactory
results. Let us investigate.

Naive Conditionalization. We want to find some sort of conditional-
ization that will apply to the present case. The obvious move seems to
be:

CrEi

t2
(·) = Crt0(·|Ei) (14)

≡
Crt0(· ∧ Ei)

Crt0(Ei)
. (15)

The problem now is that we have not yet defined the quantities on the right
hand side of this equation for the case in which branching theories are among
the possibilities: recall that Crt0 is defined only on WC

t0
, not on WC

t2
. One

wants to say, for instance, that Crt0(Ei) = Crt0(Tnb∧Ei)+Crt0(QMS∧Ei)+
Crt0(Tb ∧ Ei) + Crt0(QME ∧ Ei), but we have not defined Crt0(QME ∧ Ei)
or Crt0(Tb ∧ Ei).
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Very well: let us define those quantities. How? Well, the most obvious
values to assign to Crt0(QME∧Ei) and Crt0(Tb∧Ei), if we are to assign val-
ues at all, are ‘surely’ (on the OD semantics!) Crt0(QME∧Ei) := Crt0(QME)
and Crt0(Tb ∧ Ei) := Crt0(Tb), since (on the OD semantics), if either of
QME and Tb is true, each Ei will certainly occur (on some branch). That
is, according to this proposal, we are to identify Ei (for each i) with the
set {Tnb ∧ Ei,QMS ∧ Ei,Tb,QME} ⊂ W. This has the consequence that
the {Ei} are no longer mutually exclusive propositions, but that does not
prevent us from conditionalizing on any of them.

As is easily verified, however, applying this operation of Naive Condition-
alization to the present case has the unwanted result that a straightforward
piece of empirical evidence such as Ei confirms QMS and QME to different
degrees. This is not the result that the Everettian wants.

Note well, though: Naive Conditionalization would not have the result
that the sorts of evidence that we ordinarily take to be confirmatory of
quantum mechanics (for example, Matching) fail to count as confirmatory of
Everettian quantum mechanics. Rather, as a simple calculation can show,
Naive Conditionalization actually has the result that every event that is
quantum-mechanically possible, but not necessary, confirms QME at the
expense of theories that assign probability less than unity to that event
(namely, in our example, QMS and Tnb). (This result is not really surprising:
what we have done, in constructing Naive Conditionalization, is to give
formal expression to the intuition that disconfirmation of a theory occurs
only when something that, according to the theory in question, is improbable,
occurs; and (at the same time) that, according to QME or Tb, nothing
is improbable since everything is certain to occur.) This observation is
(presumably!) a reductio of the suggestion that Naive Conditionalization
is the rational updating policy when branching-universe theories are among
those under consideration.

The upshot of all this is as follows. Our Epistemic Problem, at the
present point in the discussion, takes a somewhat different form from that
originally suggested. The problem is not that there is some obviously correct
updating policy that has the consequence that Matching fails to count as
empirical confirmation of QME relative to Tnb and Tb. Rather, the problem
is that we have not yet found any adequate account of how empirical confir-
mation — including confirmation of a non-branching theory, such as QMS
— should proceed, once any branching-universe theories are afforded any
(nonzero) credence. This is a problem for everyone who wants a coherent
account of empirical confirmation for the general case, not only for those
who want the Everett interpretation to turn out to be acceptable.
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I conclude that, whatever prima facie intuitive support Naive Condi-
tionalization has, the claim that it captures epistemic rationality for the
general case is untenable. We must look elsewhere. In section 5, we will
find independent arguments that not only demonstrate (again) that Naive
Conditionalization is irrational, but that also show which updating policy is
rational.

5 Solving the Epistemic Problem without SU

5.1 The confirmation question is a cognitive decision prob-

lem

To find the right updating policy for the general case, and thence to address
the Epistemic Problem, let us first take a step back.

In a transition from non-Everettian to Everettian quantum mechanics,
many things change. Among the things that change, perhaps, are the status
of sentences like ‘the outcome was spin-up’; whereas such sentences can,
on a non-branching interpretation, be taken to pick out propositions in the
sense of sets of possible worlds, on the Everett interpretation they must,
at least if we eschew the SU semantics, be taken to pick out self-locating
propositions (sets of possible centered worlds). This observation is closely
related to the thought that confirmation becomes more problematic in the
Everettian case.

However this may be, not everything changes in the move to a branching-
universe interpretation. The key observation here is a close cousin of Deutsch’s
insight, in the case of the Practical Problem, that the rational agent still has
to make decisions, and that therefore we have to say something about the
boundary between rational and irrational practical decision in a branching
multiverse. In particular, the fact remains that we have person-stages who

1. hold well-defined credence functions over WC
t0

or WC
t2

;

2. observe experimental outcomes Ei, and

3. have to update their credences (trivially or otherwise) in reaction to
their observations.

We must therefore say something about the location of the boundary be-
tween rational and irrational updating policies in such a case.
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Alice’s epistemic decision problem. Alice’s problem is an epistemic
decision problem: she has to decide (and she might as well decide at time
t0), for each experimental outcome, which credence function she will move
to if/when/where she observes that outcome. That is, she has to choose n
preferred probability functions, {CrEi

t2
}, defined on WC

t2
. That is, she has

to choose a preferred map from O (the set of possible outcomes) to the set
P(WC

t2
) of probability functions on WC

t2
, representing her updating policy.

Let fpref denote the map that Alice chooses. (This ‘choice’ may not be a
voluntary one, but what of that?)

It is crucial to realize that this is all that Alice can do. She cannot, for
instance, decide to adopt a different credence distribution on observing a
given outcome Ei if QMS is true than on Everettian branches where Ei is
observed if QME is true. The possible world (which may or may not be
actual) in which QMS is true and Ei is observed on the one hand, and the
Everettian branch (which may or may not exist) on which Alice observes
Ei on the other hand, are epistemically indistinguishable environments for
Alice; it is not in her power to decide to react differently to those two
situations. (Would that science were that easy!)

How to solve the Epistemic Problem. The Epistemic Problem will
be solved if we can justify the claim that one particular function — the one
according to which belief-updating treats Everettian branch weights in the
same way that Minimal Conditionalization treats the chances of a stochastic
theory — is the uniquely rational updating policy. Our next task is to
construct this privileged function, using only resources that are available to
the Everettian according to the OD semantics. (Only to construct it; we will
justify the claim that this function represents the uniquely rational choice
later.) This construction proceeds in three steps.

1. First, we need to identify the set WC
t2

of possible centered worlds. In
our toy example, this is given by

WC
t2

= {Tnb ∧ E1, . . . , Tnb ∧ En,

QMS ∧ E1, . . . ,QMS ∧ En,

Tb ∧ E1, . . . , Tb ∧ En,

QME ∧ E1, . . . ,QME ∧ En}.

2. Next, let the probability measure Crt0 : WC
t2

−→ [0, 1] be defined as
follows.

Crt0(Tnb ∧ Ei) = Crt0(Tnb) × Crt0(Ei|Tnb);
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Crt0(QMS ∧ Ei) = Crt0(QMS) × Crt0(Ei|QMS)

= Crt0(QMS) × ChQMS(Ei);

Crt0(Tb ∧ Ei) = Crt0(Tb) × Cart0,Tb
(Ei);

Crt0(QME ∧ Ei) = Crt0(QME) × Cart0,QME(Ei)

= Crt0(QME) × WQME(Ei).

(The notation Crt0 is chosen because this probability measure is the
quasi-credence function of Alice at time t0, in the terminology of sec-
tion 2.)

3. We now have the resources to define the map fEC : O → P(WC
t2

) as
follows.

fEC(Ei) = Crt0(·|Ei). (16)

fEC is an updating rule in the required sense. In honor of its for-
mal similarity to Minimal Conditionalization, I will refer to fEC as
Extended Conditionalization.

So far, we have made no philosophically contentious claims; we have
just performed a mathematical construction. (It is a straightforward math-
ematical fact that Crt0 and the {fEC(Ei) : Ei ∈ O} satisfy the probability
axioms.) The claim that is philosophically contentious, but (I claim) correct
nonetheless, is the claim that fEC , i.e. Extended Conditionalization, is the
uniquely rational updating rule: fpref = fEC . This is the claim that, if true,
solves the Epistemic Problem: if Alice updates her beliefs according to Ex-
tended Conditionalization, then the ‘quasi-credence function’ Crt0 will be
behaving like a credence function with respect to belief-updating, as well as
with respect to practical decision. This, of course, will have the consequence
that a given outcome Ei will count as evidence for (or against) Everettian
quantum mechanics in just the same way that Ei counts as evidence for
(or against) stochastic quantum mechanics. The next task is to justify this
contentious claim.

5.2 Justifying conditionalization

We noted that Extended Conditionalization is the formal analog of Minimal
Conditionalization. Now, Minimal Conditionalization, in the absence of
branching-universe theories, strikes most people as the obviously rational
way to update credences. Minimal Conditionalization simply amounts to
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setting one’s credence to zero on the proposition whose falsity one has just
learnt, and renormalizing. What else is one supposed to do?

If this appeal to intuitive obviousness were the only justification of condi-
tionalization, then we would have a bit of a problem. Whatever the virtues of
Everettian QM, immediate widespread agreement about what is intuitively
obvious when branching universes are under consideration is unfortunately
not among its privileges.

Fortunately, however, we are not stuck here. The Bayesian literature
also contains several arguments for Minimal Conditionalization. This gives
us a systematic way to tackle the justification question: we can remind
ourselves of how those arguments for Minimal Conditionalization are sup-
posed to work in the non-branching case, and then examine the extent to
which those arguments also justify Extended Conditionalization in the gen-
eral case. My claim is that straightforward adaptations of those arguments
equally well justify Extended Conditionalization in the general case. (Note
that there is no conflict here because, in the non-branching case, Minimal
Conditionalization, Naive Conditionalization and Extended Conditionaliza-
tion all coincide.)

5.2.1 The Principle of Minimum Information

Our first classical (i.e. non-branching) argument in favor of Minimal Con-
ditionalization is that of Paul Williams (1980). This argument will yield
inconclusive results for the general case, but the reasons for its semi-failure
will be illuminating.

Williams proposed the following principle of probabilist belief dynamics:

Principle of minimum information. Given the prior distri-
bution P 0, the probability distribution P appropriate to a
new state of information is one that minimises I(P,P 0) sub-
ject to whatever constraints the new information imposes.

Here, I(P,P 0) is the information in P relative to P 0. In the case in which
the sample space has finite size, I(P,P 0) is given by

I(P,P 0) =
n

∑

j=1

pjlog
pj

p0
j

,

where the summation ranges over elements of the sample space.
It is easy to show that, in the special case in which the ‘constraint’ has

the form P (X) = 0 for some subset X of the sample space, the Principle
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of Minimum Information entails that the ‘appropriate’ posterior is the one
given by conditionalizing the prior P 0 on the set ¬X. That is, in the non-
branching case, the Principal of Minimum Information recommends Minimal
Conditionalization.

Not much is offered by way of justification for the normative status of
this principle, so it would in any case be difficult to assess the question
of whether or not the principle carries the same normative force in the
general case. However, we have a prior problem with trying to carry this
justification across to the general case. The problem is that, in the cases
Williams considers, the sample space over which the probability distributions
are defined is the same both prior and posterior to updating. In contrast,
in the general case, whereas Alice’s credence function at t0 is defined over
the set WC

t0
of centered worlds at time t0, her credence function at t2 is

defined over the set WC
t2

of centered worlds at time t2. When any branching
is going on, these two sets fail to be in 1:1 correspondence. Unless we can
reconstrue the branching problem as one in which pre- and post-updating
sample spaces are identical, the Principle of Minimum Information is not
applicable.18

There is, in fact, a way of reconstruing the general problem so that it
meets this demand. The key is to notice that, while we have a problem if
we compare t0 and t2, Alice’s credence functions at t1 and t2 are defined on
the same sample space: WC

t2
in both cases. (This is because WC

t1
= WC

t2
.)

Then we could try to argue as follows:

Generalization of the Principle of Minimum Information argument
to the general case.

1. By appeal to a decision-theoretic Principle of Reflection (or a partic-
ularly simple Dutch Book argument — see below for the general idea
of Dutch Book arguments), argue that, since Alice receives no rele-
vant information between t0 and t1, her betting quotients at those two
times had better be equal to one another.

2. Since (we are assuming) Alice’s betting quotients at t0 are given by
the quasi-credence function Crt0 defined in section 3.2, and those at
t1 are given by her credence function Crt1 at that time, we obtain the
result that Crt1 = Crt0 .

18Of course, Alice’s quasi-credence function at t0 is defined over the same set as her
credence function at t2, but it would be question-begging to claim that that was relevant.
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3. Nothing in the Principle of Minimum Information leads us to think
that that principle should be restricted to cases of purely propositional
(i.e. non-self-locating) belief. So, insofar as the Principle justifies
Minimal Conditionalization in the non-branching case, it also justifies
Minimal Conditionalization for Alice between t1 and t2: CrEi

t2
(·) =

Crt1(·|Ei) ≡ Crt0(·|Ei). This has the result that fEC is the unique
preferred updating policy.

I think this argument is, in fact, sound. However, the strategy of relying
on this argument alone in order to defend Everettian QM would have two
rather significant drawbacks:

• The adapted Minimum Information argument essentially relies on the
fact that Alice at t1 is genuinely uncertain about which outcome has
occurred (on her branch). This reliance is bad for two reasons, one of
which is far more worrying than the other.

– The first (and very weak) reason is that, since the argument pro-
ceeds via considering Alice’s post-measurement, pre-observation
self-locating uncertainty, the argument cannot directly be applied
in cases in which such uncertainty does not occur. This is a com-
mon situation: it occurs in any measurement in which the agent
discovers the result of the experiment so soon after branching
that there is no time period during which she does have the self-
locating uncertainty of Alice1.

The reason that this is a weak objection is as follows. A straight-
forward continuity argument can assure us that if updating works
in the normal way when the post-measurement, pre-observation
period of uncertainty has any finite temporal duration, then up-
dating should continue to work in that normal way in the limit in
which the duration of the period of uncertainty shrinks to zero.

However, perhaps not everyone will be convinced by this reply.
An argument that does not appeal to credences at t1 at all would
allow us to bypass this issue.

– Second, and more seriously, exclusive reliance on the adapted
Minimum Information argument would promote the idea that
genuine uncertainty about which outcome (if not pre-measurement,
then post-measurement) occurs is an essential part of the Ev-
erettian’s epistemological story, even in cases in which all details
of the branching structure are known. One of the central aims
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of this paper is to dispel this notion. To fulfil this aim, we must
supply an argument that does not depend on this sort of ‘branch
uncertainty’ at all.

• The argument cannot get off the ground without the initial step linking
the ‘quasi-credence function’ Crt0 at t0 with the credence function Crt1
at t1. This step is highly nontrivial. We must not rely on a question-
begging choice of the terminology ‘quasi-credence function’ in order
to smuggle the argument past intuition; it must be argued that Crt0

deserves the name we have given it, with respect to epistemic as well
as practical matters. In fact, the sorts of considerations that should
lead us to accept this initial step of the adapted Minimum Information
argument should also lead us on a more direct route to accepting the
unique rationality of Extended Conditionalization. In that case, the
appeal to Minimum Information itself becomes something of a free-
spinning wheel. (This point will become clearer following sections
5.2.2 and 5.2.3.)

In summary, while the Principle of Minimum Information argument is
(I claim) sound, to rely on this argument alone to justify Extended Condi-
tionalization for the general case would be both misleading and question-
begging. I therefore turn now to two further justifications for conditional-
ization that will not have these flaws: the Dutch Book argument, and the
appeal to expected epistemic utility.

5.2.2 The Dutch Book argument

The original Dutch Book argument. The second justification of Min-
imal Conditionalization that we shall consider is the Dutch Book argument
(first proposed in print by Teller (1976)). The key idea in this argument is
the following. If the agent (in a non-branching case) chooses any updating
policy other than conditionalization, and if in addition the agent is willing
to accept all bets that are “fair” according to her own degrees of belief at the
time at which the bet is offered, then a bookmaker who had no more knowl-
edge than the agent but who was aware of the agent’s updating policy could
construct a “Dutch Book” against that agent.19 A ‘Dutch Book’ is a set of
bets, each of which the agent considers fair at the time it is offered, such

19In (Greaves, 2004), I wrote that the Dutch Book could not be made against an agent
who updated her beliefs trivially: Cr

E1
t2

= Cr
En
t2

= Crt0 . As the proof given in appendix
A makes clear, this was just incorrect.
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that, if the agent accepts all the bets offered, then the agent is guaranteed
a net loss.

The existence of a Dutch Book for the scenario represented in figure 2, in
the case in which Alice’s post-observation credence functions CrE1

t2
, . . . , CrEn

t2

are related to her pre-measurement credence function Crt0 other than by
conditionalization, is proved in appendix A.

Proponents of the Dutch Book argument take susceptibility to a Dutch
Book to be a sufficient condition for epistemic irrationality; thence they con-
clude that conditionalization is the unique epistemically rational updating
policy.

The Dutch Book argument and branching universes. Our next task
is to consider the following questions. How would a would-be Dutch Bookie
proceed if one of the theories that he and Alice were contemplating was a
branching-universe theory, i.e. if the set of possibilities was as represented
in figure 2? Would he meet with the same degree of success as in the non-
branching case?

It is fairly straightforward to see that the Dutch Book argument sup-
ports the (unique) epistemic rationality of Extended Conditionalization (cf.
section 3.2) in the general case, in much the same way that it supports
Minimal Conditionalization in the purely non-branching case. The crucial
observation is the following. We have already accepted (as part of our so-
lution to the Practical Problem, in section 2) that the probability function
Crt0 operates as a credence function as far as rational action is concerned;
the only point at which the genuine credence function Crt0 enters the Dutch
Book justification of Minimal Conditionalization for the non-branching case
is via its role in acceptance and rejection of bets; choices of which bets to
accept and reject are choices of action. It follows that, in the general case,
the bookie can make a Dutch Book against Alice if Alice updates other than
by fEC , i.e. other than by ‘conditionalization’ from her effective credence
function Crt0 .

Criticism of Dutch Book arguments. I have argued that the Dutch
Book argument justifies Extended Conditionalization for the general case
just as well as it justifies Minimal Conditionalization for the purely non-
branching case. However, we must also consider how good (or bad) this
justification is. There are a number of reasons to be suspicious.

In the first instance, the bets that the bookie must use in constructing
the Dutch Book are, in part, bets on the truth of a scientific theory such

36



as QMS or QME, rather than simply bets on experimental outcomes. It is
obviously going to be difficult actually to carry out such bets. The Dutch
Book could be implemented in practice only if Alice and the bookie agree
on some procedure for conclusively determining whether or not the bet has
been won; unless there happens to be a trusted god around, this will be
difficult to arrange.

Whether or not one considers this to be a serious objection depends
on what one takes to be the exact reasoning from “Alice is susceptible to a
Dutch Book” to “Alice is epistemically irrational”. If the point was supposed
to be that susceptibility to a Dutch Book is a real practical liability that
self-interested rational agents will take steps to avoid, then the objection is
clearly a serious one — an agent need not worry, in practice, about losses she
might incur as a result of bets that are in-practice-impossible to implement.

However, as has been noted in the Dutch Book literature, understanding
the logic of a Dutch Book argument in this way is anyway implausible. The
point of a Dutch Book argument surely cannot be to highlight a real practical
liability that the agent had better take steps to avoid. There are plenty of
ways to update beliefs in wild and wonderful (non-conditionalizing) ways
while thwarting would-be Dutch Bookies: for instance, one could refrain
from advertising one’s intended updating policy, and/or one could simply
refuse to take any bets. If such arguments have a point at all, it must
rather be that, “somehow”, vulnerability to a Dutch Book points out an
underlying incoherence in one’s beliefs. I conclude that the fact that the
bets in question cannot actually be implemented does not further detract
from the force of the Dutch Book argument.

The broader issue raised by this objection, however, is an important and
controversial one. The challenge is to expand the “somehow” in the previ-
ous paragraph into a coherent account of just why susceptibility to a Dutch
Book should be taken as an indicator of epistemic irrationality. Several au-
thors believe that it should not. A common objection is that the Dutch Book
shows only that updating other than by conditionalization would, under cer-
tain exotic circumstances, be prudentially irrational. There is a distinction
(these authors insist) between prudential and epistemic rationality; to pur-
sue riches is not necessarily to respect one’s epistemic duties. While there
have been attempts (e.g. (Christensen, 1996)) to reply to this objection and
defend the relevance of Dutch Book arguments to epistemic rationality, the
issue remains controversial.

It is therefore worth looking for an argument that can bypass this con-
troversy, by avoiding reliance on the relevance of prudent betting behaviour
to epistemic rationality. This was the motivation behind a third attempt to
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justify conditionalization — the argument from expected epistemic utility.
We turn now to this argument, and its generalization to the general case.

5.2.3 The Expected Epistemic Utility argument and Extended
Conditionalization

The source of the objection to the Dutch Book argument is not that that
argument uses considerations of expected utility. Rather, it is that the Dutch
Book argument uses the wrong kind of utility function. To elaborate: the
reason that the Dutch Book argument seems to play only to considerations
of prudential rationality is that it assumes that utility is linear in dollars.
The worry here is not that the linearity assumption is implausible; rather,
it is that there is no reason to think that dollars are relevant in any way
whatsoever to considerations of epistemic rationality.

What sort of utility function would do better justice to the spirit of
epistemic rationality, then? The central idea behind our third argument for
conditionalization (Greaves & Wallace, 2006) is that if we had a utility func-
tion that captured the epistemic value of being in a given belief state, then
epistemic rationality would consist in maximizing the (subjective) expecta-
tion value of that utility function. It turns out that, on such an approach,
conditionalization can be justified on the basis that, of all possible updat-
ing policies, conditionalization is the one that yields the highest value of
expected epistemic utility. (An heuristic gloss: ‘Conditionalization is epis-
temically rational because it is likely to lead you to epistemically good belief
states.’20)

The expected-epistemic-utility argument carries over just as well as the
Dutch Book argument does to the Everettian case. The crucial point, once
again, is that the Everettian branch weight measure WQME plugs into ex-
pected utility calculations in exactly the same way in which a mathemati-
cally identical chance function would plug in if QME were a chance theory. It
follows that, if Alice is rational, she will select Extended Conditionalization
as her updating policy. (‘Extended Conditionalization is rational because it
is likely to lead you to epistemically good belief states on the branches you
care the most about.’)

To summarize: We have considered three arguments for the epistemic
rationality of conditionalization: the argument from the Principle of Mini-
mum Information, the diachronic Dutch Book argument, and the argument

20Since the details of this argument, and the framework required to state the claim
precisely, are somewhat involved, I will not repeat them here; the reader who wishes to
assess this argument in the non-Everettian case is referred to the cited paper.
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from expected epistemic utility. When applied to a case in which one of
the agent’s candidate theories is a branching-universe theory, each of the
arguments uniquely sanctions the Extended Conditionalization that places
Everettian quantum mechanics on an epistemic footing equal to that of any
other interpretation of quantum mechanics; none sanctions the pathological
Naive Conditionalization that led us into trouble in section 4.

This concludes the core of our argument for the claim that the Epistemic
Problem can be solved within the rationality-based approach to probability
in the Everett interpretation.

6 Remarks on intertemporal consistency

There is, however, something curious about the argument that I have pre-
sented so far. The task of this section is to highlight what that is, and to
present responses. The discussion will throw some light on the place of the
above arguments in an overall defense of the Everett interpretation.

Under relatively uncontentious auxiliary assumptions, a necessary and
sufficient condition for solving the Epistemic Problem is as follows: estab-
lish that the agent who believes that QME is true and that branching has
occurred, but who has gained no post-split information as to which branch
she is on, should set her self-locating credences equal to the assumed branch
weights. But the arguments of section 3 and 5 do not, directly, establish
this. What they (more directly) show is that a pre-measurement Everettian
agent, if she was able to do something that would constrain her future selves
to adopt particular sets of degrees of belief on every future branch, should
choose to constrain her future selves to set their (self-locating) degrees of
belief according to those branch weights. In the absence of such a constrain-
ing mechanism, whether or not her future selves choose to obey is (until we
have invoked some principle of intertemporal consistency) an open question.
This observation invites the following objection:

‘Irrelevance of hypothetical predecessors’ objection. In order to solve
the Epistemic Problem, we require an explanation of why we should,
now, conditional on the assumption that the Everett interpretation
is true, have a high degree of belief that high-weight outcomes have
occurred on the branch that we are now on. According to the Ev-
erettians’ rationality-based program (without subjective-uncertainty),
this explanation is: well, yesterday, a predecessor of mine would have
cared a lot about branches on which high-weight outcomes occur, and
intertemporal consistency requires that my present degrees of belief
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match the ‘caring measure’ that she had (or would have had) yester-
day. But how much someone yesterday would have cared about some
branch or another cannot possibly be relevant to what I, now, should
believe (even if that ‘someone’ is me). This point becomes even more
obvious when we note that we are often concerned with evidence re-
sulting from quantum measurements that took place before we were
even born. In those cases, the predecessors in question are not even
real. This shows that there is something fishy about the argument
that has been offered so far.21

This is an important and illuminating objection, but it can be answered.
There are two (mutually complementary) responses.

Response 1: the post-measurement credence function can, if de-
sired, be obtained without appeal to predecessors. The key to the
first response is to remember that the notion of probability in the Everett
interpretation seemed problematic, in the first place, only from the pre-
measurement perspective. From the post-measurement perspective, we can
(even on the OD semantics) make sense of genuine uncertainty: the agent
is uncertain about which outcome occurred on the branch she is on.

From the post-measurement point of view, therefore, it is only the quan-
titative problem (why should our credences respect the branch weights?), not
the incoherence problem (why is the notion of credence appropriate at all?),
that requires a solution. To answer the quantitative problem, two remarks
should be made. First remark: in the context of a non-branching theory,
one typically accepts a primitive rationality postulate (the Lewisian Princi-
pal Principle) without argument. To demand more in the case of Everettian
quantum mechanics is therefore to invoke double standards. Second remark:
one could apply the sort of symmetry argument that was supposed to justify
the Everettian Principal Principle from the pre-measurement perspective
(i.e. the sort of symmetry argument involved in proofs of the representation
theorems given by Deutsch (1999) and Wallace (2003), (2005c)) directly to
the post-measurement perspective. The idea that the post-measurement
agent should ‘have equal credence in all branches’, for instance, falls foul
of exactly the same objections as the idea that the pre-measurement agent
should ‘care about all branches equally’ (viz. that this suggestion presup-
poses more structure than there in fact is; cf. (Greaves, 2004, section 5.3)
and/or (Wallace, 2005c, section 9)).22

21I am grateful to Tim Maudlin for raising this issue.
22David Wallace has suggested (2005a, p.17) that the Everettian representation theo-
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Response 2: the arguments for Extended Conditionalization serve
as a consistency check. Response 1, however, leaves it somewhat mys-
terious whether the arguments adduced in this paper have any role to play
in a defense of the Everett interpretation: if we can argue from the pre-
measurement perspective that Everettian branch weights play the same role
as chances in practical action, and we can argue from the post-measurement
perspective that Everettian branch weights play the same role as chances in
theory confirmation, then we have solved both the Practical Problem and
the Epistemic Problem; who cares, then, about the link between the two?

We must care also about the link, for the following reason. If, hav-
ing independently advocated a particular strategy for rational action and
a particular epistemic strategy, we were to find that the combination of
the two led to failures of intertemporal consistency — if, for example, it
turned out that the pre-measurement agent should desire to constrain her
post-measurement selves to adopt credence functions that do not count as
reasonable from the post-measurement perspective — then our argument as
a whole would have landed us in paradox. This would have been the case,
for instance, if Naive Conditionalization (section 4) had turned out to be the
unique otherwise-rational updating policy in the general case. The defenses
of Extended Conditionalization presented in this paper show that such in-
tertemporal inconsistency does not in fact occur. The strategies for rational
action and for rational belief in the presence of a branching-universe theory,
even on the OD semantics, complement one another in just the same way
that they complement one another in the absence of a branching-universe
theory.

7 Conclusion

There was an intuitive worry that the usual sorts of empirical evidence for
quantum mechanics would not count as evidence also for Everettian quan-

rems (ERTs) succeed where non-Everettian symmetry arguments, similarly aimed at de-
riving rationality constraints on credence functions, fail, and that the reason is that there
is (from the pre-measurement Everettian perspective, but not from the post-measurement
Everettian perspective or from the non-Everettian perspective) no fact of the matter as
to which outcome will occur. If Wallace is correct, then the ERT arguments do indeed
have more force from the pre-measurement perspective than from the post-measurement
perspective; the ‘Irrelevance of hypothetical predecessors’ objection then returns as an
objection to Wallace’s claim that the Everettian can do better than the non-Everettian.
As mentioned in footnote 6, I am skeptical of Wallace’s suggestion, but this is not the
place to investigate further.

41



tum mechanics, unless we accept the controversial ‘subjective-uncertainty’
semantics. But working through the details shows this worry to be un-
founded: the arguments behind our best account of empirical confirma-
tion, when applied to the Everettian case, show that such evidence confirms
stochastic quantum mechanics and Everettian quantum mechanics in exactly
the same way. This leads to my first conclusion: that the rationality-based
approach can solve the Epistemic Problem of probability in the Everett in-
terpretation.

We should also draw a second conclusion from this discussion. The
rationality-based approach to probability in the Everett interpretation is
usually taken, by advocates and critics alike, to require the ‘subjective-
uncertainty’ (SU) thesis defended by Saunders and Wallace. But this con-
sensus is mistaken. In a previous paper, I argued that the rationality-based
solution to the Practical Problem can be justified just as well without SU
as with SU. The present paper has presented a solution to the Epistemic
Problem which, again, does not require SU. The argument could easily be
rephrased in terms more congenial to the SU viewpoint (we could, for in-
stance, simply refer to Crt0 as a credence function, rather than introducing
the terminology ‘quasi-credence function’, and then run the argument as
before). If SU is correct, that rephrasing should be preferred. But such a
rephrasing would neither add to nor detract from the force of the argument
in defense of Extended Conditionalization. This leads to my second conclu-
sion: that the issue of whether or not SU is correct is orthogonal to the issue
of whether or not Everettian quantum mechanics is an acceptable physical
theory.
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A The Dutch Book argument

This appendix contains the details of the Dutch Book argument appealed
to in section 5.2.2.

Consider the following pair of bets:
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T ∧ Ei ¬T ∧ Ei ¬Ei

Bet 1 R · (1 − Crt0(T |Ei)) −R · Crt0(T |Ei) 0

Bet 2 S · (1 − CrEi

t2
(T )) −S · CrEi

t2
(T ) 0

Each row of this table represents one bet; each column represents one
proposition. The table entries give the amount (which may be positive or
negative) that the parties agree that Bob will give Alice if Alice accepts the
bet in question, in the event that the corresponding possible world turns out
to be actual.

Bet 1 is offered at time t0, i.e. before the measurement has occurred.
Bet 2 is offered, after the measurement, iff the outcome is Ei.

Crt0 and CrEi

t2
are (as usual) Alice’s quasi-credence function at time

t0 and her credence function at time t2 having observed Ei, respectively.
(Recall that, when no branching-universe theories are under consideration,
the ‘quasi-credence function’ just is the credence function.) R and S are
monetary amounts whose values are yet to be fixed; they may be positive
or negative.

First, we note that Alice’s own quasi-credence function commits her to
regarding each of these bets as fair at the time it is offered:

Definition: Say that a bet is fair for Alice at time t iff the expected value
of the bet, evaluated according to Alice’s credence function at time t,
is zero.

Claim 1: Bet 1 is fair for Alice at time t0. Bet 2 is fair for Alice at time t2
if Ei has occurred.

Proof of claim 1: The expected value of bet 1, evaluated with respect to
Crt0 , is given by

EUCrt0
(Bet1) = Crt0(T ∧ Ei) · R · (1 − Crt0(T |Ei))

+Crt0(¬T ∧ Ei) ·R · (−Crt0(T |Ei))

=
1

Crt0(Ei)
·R · (Crt0(T |Ei) − (Crt0(T |Ei))

2

−Crt0(T |Ei) + (Crt0(T |Ei))
2)

= 0.

The second component of the claim follow from a similarly trivial
calculation.
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Next, we claim that, if Bob knows Alice’s quasi-credence function and
updating policy, and if in addition Alice updates her credence in T other
than by conditionalization, then Bob can choose the values of R and S so
that Alice is guaranteed a net loss if outcome Ei occurs, whether T is true
or not:

Claim 2: If CrEi

t2
(T ) 6= Crt0(T |Ei), then there exist values of R and S such

that Alice makes a net loss in each of the possible worlds in which Ei

occurs.

Proof of Claim 2: By symmetry, it suffices to consider the case CrEi

t2
(T ) >

Crt0(T |Ei). In this case, take R < 0, and let S = −R. Then Alice’s
net gain, in the case in which T ∧Ei holds, is given by:

R · (1 − Crt0(T |Ei)) + S · (1 −CrEi

t2
(T ))

= R · ((1 − Crt0(T |Ei)) − (1 − CrEi

t2
(T )))

= R · (−Crt0(T |Ei) + CrEi

t2
(T ))

< 0,

since R < 0 and −Crt0(T |Ei) + CrEi

t2
(T ) > 0.

Similarly, Alice’s net gain in case ¬T ∧ Ei holds is given by:

−R · Crt0(T |Ei) − S · CrEi

t2
(T )

= R · (−Crt0(T |Ei) + CrEi

t2
(T ))

< 0.

Repeating the argument for each candidate theory and each outcome,
we obtain the full Dutch Book result: if Alice updates her credences (in any
theory, given any outcome) other than by conditionalization on Crt0 , then
there exists a set of bets, each of which Alice regards as fair at the time it
is offered, such that, if Alice accepts all bets in the set, she makes a net loss
in every possible world.
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