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Abstract

According to Bayesian epistemology, the epistemically rational agent
updates her beliefs by conditionalization: that is, her posterior subjective
probability after taking account of evidence X, pnew, is to be set equal to
her prior conditional probability pold(·/X). Bayesians can be challenged
to provide a justification for their claim that conditionalization is recom-
mended by rationality — whence the normative force of the injunction to
conditionalize?

There are several existing justifications for conditionalization, but none
directly addresses the idea that conditionalization will be epistemically
rational if and only if it can reasonably be expected to lead to epistemi-
cally good outcomes. We apply the approach of cognitive decision theory
to provide a justification for conditionalization using precisely that idea.
We assign epistemic utility functions to epistemically rational agents; an
agent’s epistemic utility is to depend both upon the actual state of the
world and on the agent’s credence distribution over possible states. We
prove that, under independently motivated conditions, conditionalization
is the unique updating rule that maximizes expected epistemic utility.

1 Introduction: Justifying conditionalization

According to Bayesian orthodoxy, the ideal epistemic agent can be modeled as
follows. The agent contemplates a set Ω of possible worlds. At every time, the
agent’s epistemic state can be represented by a probability distribution p over
Ω (that is, probabilism holds). A learning event occurs when, for some subset
X of Ω, the agent learns that the actual world is a member of X. On learning
this, the agent updates her probability distribution by conditionalization on X:
that is, she sets pnew(·) = pold(·/X).
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Real epistemic agents are not (at least not quite) like this: Bayesian episte-
mology is a normative theory, rather than a descriptive one. But then Bayesians
face the challenge: whence the normative force of the injunction to condition-
alize?

One answer is ‘it’s just obvious that conditionalization is the epistemically
rational way to update one’s credence distribution’. But it is better if we can jus-
tify the obvious. Existing justifications for conditionalization include: a Dutch
Book argument (if you update your beliefs non-trivially but other than by con-
ditionalization, then a Dutch Book can be made against you [9]); an appeal
to a Principle of Minimum Information (conditionalization gives the posterior
credence distributions that are ‘closest’ to your prior distribution while being
consistent with the fact that you have just learnt X [13]); an appeal to a Prin-
ciple of Reflection (Reflection entails conditionalization [11]); and a symmetry
argument ([10]:331-337). While these approaches have their interest and merits,
none directly addresses the idea that conditionalization will be epistemically ra-
tional if and only if it can reasonably be expected to lead to epistemically good
outcomes.

This paper applies the approach of cognitive decision theory to provide a
new justification for conditionalization, based on precisely that idea. We assume
that a rational epistemic agent always chooses that epistemic act that maximizes
his expected epistemic utility, and prove that, under independently motivated
conditions, conditionalization maximizes expected epistemic utility.

Section 2 is an introduction to the basic ideas of the cognitive decision
theory we will use, including that of epistemic utility. We illustrate, by means
of a toy example, how the fact that a given agent will always maximize expected
epistemic utility is supposed to determine his choice of updating policy.

Section 3 contains the central claims of this paper. We note (section 3.1)
that an agent faithfully represented by cognitive decision theory might (de-
pending on the form of his utility function) be forbidden to hold some particular
subset of possible credence distributions, on the grounds that those credence dis-
tributions fail to maximize expected epistemic utility calculated with respect to
themselves; that is, it may be that some credence distributions undermine them-
selves. We then prove (sections 3.2 and 3.3) that, of all possible belief-updating
policies, conditionalization maximizes expected epistemic utility provided only
that the conditional probability distributions are not self-undermining in this
sense.

There are two perspectives one might take on this result. First, if we re-
gard it as a rationality constraint that the epistemic utility function must not
forbid a priori any credence distribution in this way, then we will regard the
proof as showing that for any epistemically rational agent, conditionalization
maximizes expected epistemic utility. Second, whether or not we accept that
constraint as a necessary condition for epistemic rationality, it has been shown
for an arbitrary epistemic utility function that the EU-maximizing agent condi-
tionalizes whenever his conditional posterior does not undermine itself. Since an
agent whose conditional posteriors do undermine themselves obviously should
not conditionalize, this is not only as strong an optimality proof as someone
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unprepared to accept constraints on utility functions can hope for – it is also as
strong an optimality proof as she could want.

Section 4 considers a few particular candidate epistemic utility functions,
by way of illustration. Section 4.1 suggests a plausible epistemic utility function,
and discusses how this particular utility function encodes a respect for epistemic
values such as truth and verisimilitude. Section 4.2 discusses a prima facie intu-
itive, but on reflection less plausible, utility function that has been considered in
the literature, according to which epistemic utility is linearly related to degree
of belief in the truth. We discuss an objection to the approach of this paper:
the objection that the possibility of utility functions such as this undermines
the whole decision-theoretic approach to probabilist epistemic rationality.

Section 5 is the conclusion.

2 Cognitive decision theory

This section introduces the basic ideas of the cognitive decision theory we will
use: states, probability distributions, (epistemic) acts, act availability, epistemic
utility and expected epistemic utility. We explicate each of these notions below
(section 2.1), and illustrate the theory throughout by means of a toy model
of a simple cognitive decision process. Following this exposition, section 2.2
mentions, only to set aside, two closely related issues that we do not intend
to address: the place (or lack of it) of cognitive decision theory in an ‘all-
things-considered’ decision theory, and the relevance (or lack of it) of epistemic
utility to the advisability of gathering, as opposed to epistemically responding
to, evidence.

2.1 The framework of cognitive decision theory

Some cognitive states are, epistemically speaking, better than others. For
example, it is presumably (epistemically) better to have higher credences in
truths and lower credences in falsehoods. According to the (cognitive) decision-
theoretic approach, epistemic rationality consists in taking steps that can rea-
sonably be expected to bring about (epistemically) good outcomes.

Cognitive decision theory provides a framework in which the ideas of the
preceding paragraph can be made precise and quantitative. The decision prob-
lems with which we will be concerned take the following form. The agent begins
in some fixed belief state (that is, he holds some fixed initial credence distri-
bution). He knows that he is about to receive some new piece of information,
from among a fixed range of possibilities. Before receiving the information, he
chooses an updating policy: that is, he specifies, for each of the possible pieces
of new information, how he will change his credence distribution if that turns
out to be the information that he does in fact receive. The decision he has to
make is the choice of an updating policy.

EXAMPLE. Mike has a coin. He is unsure as to whether or not it is a fair coin

— specifically, he assigns 50% credence to its being fair — but he is (let us
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suppose) certain that either it is fair or it is weighted in such a way that the

chances for outcomes (Heads, Tails) on a given toss are ( 1
4
, 3

4
) respectively.

The coin is about to be tossed; after observing the result of the toss, Mike

will reassess his degrees of belief as to whether or not the coin is fair. He

must decide in advance how the reassessment will proceed: which credence

distribution he will move to if he sees heads, and which if he sees tails. We

want to know how that decision should proceed.

The remainder of section 2.1 spells this out in more detail, in a framework of
cognitive decision theory. (Cognitive decision theory is in many respects similar
to ordinary, prudential decision theory; our framework is loosely based on that
of Savage [8].)

States. The agent contemplates a set S of (mutually exclusive and jointly
exhaustive) possible states of the world; he is unsure as to which element of
S obtains. S can be thought of as a partition of the set of possible worlds.1

For our toy example, the states might be as follows:

S = {sFH , sFT , sUH , sUT }, where sFH : coin fair, outcome of toss is H
sFT : coin fair, outcome of toss is T
sUH : coin unfair, outcome of toss is H
sUT : coin unfair, outcome of toss is T.

Probability distributions. The agent does, however, have definite subjec-
tive degrees of belief as to which state obtains: his doxastic state is, at any time,
represented by some probability distribution p over S. We write P for the set
of all probability distributions over S.

The agent’s prior. One particular probability distribution p∗ ∈ P represents
the agent’s prior doxastic state — his doxastic state before learning the evidence,
when he is making his cognitive decision. For our purposes, p∗ is arbitrary but
is to be held fixed.

Mike’s prior doxastic state is represented by the following probability distri-
bution over S:

p∗(sFH) = 1
4
;

p∗(sFT ) = 1
4
;

p∗(sUH) = 1
8
;

p∗(sUT ) = 3
8
.

Acts. The set A of acts is supposed to reflect the possible courses of (epis-
temic) action among which the agent must choose. An epistemic act a is an
assignment of a probability distribution to each state s ∈ S, with the intended
interpretation that if a(s) = ps, then ps is the probability function that an agent
performing act a would adopt as his credence distribution if state s obtained.
(We make no assumption that the ‘choice’ between acts is a voluntary one.)

1We will assume throughout that S is finite. This is merely for simplicity of exposition.
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Act availability; experiments. Not all acts will be available to a given
agent at a given time. Specifically, suppose that s1 and s2 are empirically indis-
tinguishable for an agent. Then he cannot perform any act which requires him
to hold different probability distributions according to which of them obtains.

To identify the subset of acts that are available, we introduce the notion of
an experiment. An experiment is represented mathematically by a partition
E of S (that is, E is a set of mutually exclusive and jointly exhaustive subsets
of S); we say that experiment E is performed (for a particular agent) when
the elements of E become epistemically distinguishable for the agent. When a
particular experiment E is performed, the available acts are just those acts that
always assign the same probability distribution pj ∈ P to any two states that
are members of the same element Ej of E; write AE ⊆ A for the set of such
available acts. (We will have AE = A only in the somewhat implausible case
in which the maximally fine-grained experiment, which distinguishes between
every pair of possible worlds, is performed.) Since such acts are prescriptions
for how to revise one’s beliefs in the light of new evidence, we also call them
updating policies. (For convenience, for a given act a ∈ AE, we will generally
write a(Ej) (with Ej ∈ E) rather than a(s) (with s ∈ S) for the probability
distribution that the act a assigns to each state in Ej .)

Mike’s experiment is given by E = {H, T}, where H = {sFH , sUH} and
T = {sFT , sUT }. The acts that are available to him as a result of this
experiment are just those that assign one probability distribution over S to
H, and another (not necessarily distinct) to T .

Mike’s cognitive decision is whether to commit himself to updating by condi-
tionalization from his prior p∗ on the result of the coin toss, or by a particular
rival updating policy R (given below) that has just popped into his head.

Updating by conditionalization from the prior p∗ would lead to the following
possible posteriors:2

Cond(H) = p(·/H) =: pH , where pH(sFH) = 2
3

pH(sFT ) = 0
pH(sUH) = 1

3

pH(sUT ) = 0;
Cond(T ) = p(·/T ) =: pT , where pT (sFH) = 0

pT (sFT ) = 2
5

pT (sUH) = 0
pT (sUT ) = 3

5
.

2Recall that we have defined an act (updating policy) as a function from states (or disjunc-
tions of states) to probability distributions. According to this definition, conditionalization
from some prior p∗ and conditionalization from a distinct prior q 6= p∗ count as distinct
updating policies, as do conditionalization from prior p∗ given an experiment E and condi-
tionalization from p∗ given a distinct experiment E′. Strictly, to pick out a unique act, we

should therefore write Condp∗

E ; we will shorten this to Cond since the prior p∗ and experi-
ment E will be held fixed throughout our discussion. This way of speaking has the advantage
that the expected utility (with respect to some fixed probability distribution that may or may
not equal the agent’s prior) of an act will be independent of what the agent’s prior was, and
independent of which experiment is performed. It has the disadvantage that conditionalization
simpliciter does not count as a single updating policy, which is perhaps contrary to ordinary
usage of ‘updating policy’.
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We stipulate that the alternative updating policy R, on the other hand, is as
follows:

R(H) =: qH , where qH(sFH) = 1
2

qH(sFT ) = 0
qH(sUH) = 1

2

qH(sUT ) = 0;
R(T ) =: qT , where qT (sFH) = 0

qT (sFT ) = 1
4

qT (sUH) = 0
qT (sUT ) = 3

4
.

Cond and R are both available acts after the coin-flip, since each assigns
the same probability distribution (Cond(H) and R(H) resp.) to sFH as
it does to sUH , and the same probability distribution (Cond(T ) and R(T )
resp.) to sFT as it does to sFT . That is, neither Cond nor R makes the
unreasonable requirement that Mike must take a different course of epistemic
action depending (say) on whether the world, unbeknownst to Mike, happens
to be in some fair-coin state or in some unfair-coin state; both updating rules
require him to react only to information that the experiment will provide him
with.

We offer no intuitive rationale for the rule R, and indeed we have none. The
point is not that R has any intuitive plausibility whatsoever as a serious rival
to conditionalization, but rather that R is a course of epistemic action that
an agent could in principle adopt. Our aim is to show that considerations of
intuitive plausibility need not be invoked in order to outlaw R, because the
inferiority of that updating policy will follow by calculation from the decision-
theoretic model.

Epistemic utility functions. A given agent (we are assuming) holds a par-
ticular epistemic utility function — a function U : S × P → < assigning
a real number to each pair consisting of a state and a probability distribution.
U(s, p) represents the epistemic value (“epistemic utility”) of holding credence
function p when state s in fact obtains.3

Note that we allow our notion of utility to be externalist in the sense that we
allow two pairs < s, p >, < s′, p >, in which the agent is in the same cognitive
state but a different state of the world in fact obtains, to be valued differently.
This is to be expected since the agent may well want his beliefs to be true, over
and above the subjective feelings associated with being in that belief state.

Presumably, since he is a responsible epistemic agent, Mike attaches a high
epistemic utility to having high degrees of beliefs in truths. In that case, his

3A different sort of cognitive decision theory (e.g. Levi [4], Maher [5]) focusses on cognitive
acts that involve accepting particular propositions, rather than holding particular probability
distributions. The domain of the epistemic utility function for such acceptance-based cognitive
decision theories is the set of pairs < s, A > of states and propositions: < s, A > is to be read
‘accepting proposition A when state s obtains’. We do not regard such theories as necessarily
in competition with our own: they are engaged in a different project.
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epistemic utility function might look something like this:

For arbitrary state s ∈ S and probability distribution p over S,
U(s, p) = −(1− p(s))2 −

∑
s′ 6=s(p(s′))2.

(1)

Heuristically, we can see that this utility function ‘values truth’ because it

equates the utility of holding credence function p when state s obtains to the

sum of two terms, the first of which increases with increasing degree of belief

in the true state s, and the second of which increases with decreasing degrees

of belief in false states s′. (Note the minus signs.)

Expected epistemic utility. We assume4 that the rational epistemic agent
always performs that act that has the highest expected epistemic utility (with
respect to the agent’s prior p∗) of all available acts, where the expected epistemic
utility of an act a (with repsect to probability distribution p) is given by

EUp(a) =
∑
s∈S

p(s) · U(s, a(s))

Using the alternative notation mentioned above, in which acts are defined
on experiments rather than directly on S, we can also write the expected utility
of a as

EUp(a) =
∑

Ej∈E

∑
s∈Ej

p(s) · U(s, a(Ej)), (2)

where E is the experiment on which the act a is defined.
Iff an act a maximizes expected epistemic utility given an experiment E

(that is, if it has at least as high an expected epistemic utility as any other act
in AE), say that a is optimal (given E). Iff a is the unique optimal act, say
that a is strongly optimal (given E). (We will often leave ‘given E’ implicit.)

Being an epistemically rational agent, Mike will choose whichever updating
policy has the higher expected epistemic utility. To see which policy this is,
we evaluate the EU of each policy using Mike’s prior p∗ and his epistemic
utility function U , as follows:

Expected epistemic utility of updating by conditionalization from prior p∗

given experiment E,

EUp∗(Cond) = p∗(sFH) · U(sFH , pH) + p∗(sFT ) · U(sFT , pT )
+p∗(sUH) · U(sUH , pH) + p∗(sUT ) · U(sUT , pT )

= 1
4
(−(1− 2

3
)2 − ( 1

3
)2) + 1

4
(−(1 − 2

5
)2 − ( 3

5
)2)

+ 1
8
(−(1 − 1

3
)2 − ( 2

3
)2) + 3

8
(−(1− 3

5
)2 − ( 2

5
)2)

= −0.0479.

4Without providing a justification. Perhaps the justification is that a representation the-
orem shows that any agent whose preferences over acts satisfy certain axioms must be repre-
sentable by some utility function U and some probability distribution p such that he always
prefers an act a to another b iff EUp(a) > EUp(b), with EUp as defined in (2). Or perhaps
the justification is simply that the injunction to maximize EU seems intuitively plausible and
gives intuitively plausible results. We won’t go into this issue; we take as a premise, for the
purposes of this paper, that there is some adequate justification.
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On the other hand, the expected epistemic utility of adopting the alternative
policy R is given by

EUp∗(R) = p∗(sFH) · U(sFH , qH) + p∗(sFT ) · U(sFT , qT )
+p∗(sUH) · U(sUH , qH) + p∗(sUT ) · U(sUT , qU )

= 1
4
(−(1− 1

2
)2 − ( 1

2
)2) + 1

4
(−(1 − 1

4
)2

−( 3
4
)2) + 1

8
(−(1− 1

2
)2 − ( 1

2
)2) + 3

8
(−(1 − 3

4
)2 − ( 1

4
)2)

= −0.120.

Since EUp∗(Cond) > EUp∗(R), Mike will choose to update by Cond rather

than by the alternative policy R.5

2.2 Disclaimers

Before proceeding further, we flag two issues that are closely related to the
spirit of the decision-theoretic approach, but that we do not (and need not)
tackle in this paper: the place (or lack of it) of cognitive decision theory in
an ‘all-things-considered’ decision theory, and the relevance (or lack of it) of
epistemic utility to the advisability of gathering, as opposed to epistemically
responding to, evidence.

Epistemic vs. all-things-considered utility. There is a sense in which a
particular belief state can have a high ‘utility’ without it being at all epistemi-
cally rational to pursue that state. A high degree of belief in the existence of a
god, for instance, may make me happy and make my life go better in all sorts
of ways — and thus be of high ‘utility’ in a prudential sense — but yet, if there
is no god then such a belief state is, epistemically speaking, undesirable, and
if the evidence for its truth is slim then it is epistemically irrational to hold
such beliefs. We fully accept that there is also this prudential sense of ‘util-
ity’, and that the demand to maximize prudential utility may conflict with the
demands of epistemic rationality. But this does not entail that considerations
of epistemic utility cannot hope to account for epistemic rationality. An epis-
temic utility function, such as those we work with in this paper, is concerned
only with the epistemic desirability of belief states. Where epistemic desirabil-
ity diverges from ‘prudential’ or ‘all-things-considered’ desirability, an epistemic
utility function tracks only the former. Whether and how an epistemic utility
function plays a role in any integrated theory of the ‘all-things-considered’ ratio-
nality of epistemic acts is an important question, but not one we are concerned
with here.

5In any real epistemic decision problem, of course, the agent will not really be deciding
only among two updating policies — there is always an infinite number of available candidate
updating policies, and the agent is to choose the policy that, of all those candidates, gives the
highest expected epistemic utility. We have restricted consideration to two candidate rules in
our toy model only for purposes of illustration.
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Epistemic vs. non-epistemic acts. It has been argued that a decision-
theoretic framework — cognitive ([6], [2]:127-9) or otherwise ([1]) — can be in-
voked to justify experimentation. However that may be, that is not the project
we are engaged in here. Our application of cognitive decision theory is concerned
with purely epistemic acts; the act of performing a particular experiment, how-
ever epistemically motivated, is a non-epistemic act. That is, we assume only
that, given that one has received a given piece of evidence (against one’s will or
otherwise), epistemic rationality requires that one then perform the epistemic
act of altering one’s doxastic state in the manner that, in the light of that
evidence, maximizes expected epistemic utility. Whether and how a cognitive
decision theory for epistemic acts could be integrated into a satisfactory decision
theory, paying due respect to epistemic goods, for choices among non-epistemic
acts (including evidence-gathering acts) is an important question, but, again,
not one that we are concerned with here.

3 Conditionalization and maximization of ex-
pected epistemic utility

This section contains our claims in defense of conditionalization. We proceed
in three steps. In section 3.1 we define the notion of a constant act, and a
relation we call recommendation between probability distributions. We note an
important consequence of our assumption that an epistemically rational agent
always chooses the epistemic act that maximizes expected epistemic utility: for
some utility functions, there exist probability distributions that the ideal agent
is forbidden to hold on the grounds that they fail to ‘recommend’ themselves.
In section 3.2 we use the notion of recommendation to define a class of updating
policies, quasi-conditionalization (QC), and we prove (for an arbitrary epistemic
utility function) that QC is optimal. In section 3.3 we characterize (Corollary
1) a set of epistemic utility functions for which conditionalization is optimal.We
also prove (Corollary 2; again for an arbitrary epistemic utility function) that in
any case conditionalization is optimal if it is even coherent, in the sense that the
probabilities conditionalization would have the agent adopt are not ones that
his own utility function forbids him ever to hold.

3.1 Constant acts, recommendation, self-recommendation
and stable utility functions

Constant acts. We will have particular interest in the constant acts: those
acts that instruct the agent to adopt the same probability distribution as his
credence function, regardless of which state obtains.

The expression for the expected utility of a constant act takes a particularly
simple form. Let kq denote the constant act that assigns q to all states, for
arbitrary q ∈ P. The expected epistemic utility of kq, calculated with respect
to the agent’s current credence distribution, p, is given by
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EUp(kq) =
∑
s∈S

p(s) · U(s, q). (3)

The recommendation relation; stability. The notion of the epistemic util-
ity of a constant act raises an interesting issue that is important to our present
project. All constant acts are, of course, always available in the sense expli-
cated in section 2.1. So, at every time, the agent is to regard all constant acts
as available options between which he can choose. Therefore, an ideally ratio-
nal agent is able to hold a probability distribution p as his credence distribution
only if p, by the lights of p itself, maximizes expected utility — that is, only if
(∀q ∈ P)(EUp(kp) ≥ EUp(kq)). If this condition fails, the minute the agent
found himself holding p, he would be compelled to move to some other distribu-
tion q that maximized EU calculated with respect to p — which is to say that
an ideally rational agent could not hold p in the first place, even for a moment.6

We make the following definitions:

• Say that p recommends q (write p
R−→ q) iff, when the only available

acts are the constant acts, kq maximizes expected utility calculated with
respect to p — that is, iff ∀r ∈ P, EUp(kq) ≥ EUp(kr).

• Iff, in addition, p recommends no distribution distinct from q, say that p
strongly recommends q.

• Iff p recommends p, say that p is self-recommending. Iff, in addition,
p recommends no distribution distinct from p, say that p is strongly
self-recommending. Iff p is not self-recommending, say that p is self-
undermining.

Clearly, the extension of the recommendation relation depends on the utility
function U . We can thus classify utility functions based on the structure of the
recommendation relations they induce:

• Say that U is everywhere stable iff, according to U , every probability
distribution is self-recommending.

• Say that U is everywhere strongly stable iff, according to U , every
probability distribution is strongly self-recommending.

• Say that U is partly stable iff, according to U , some probability distri-
butions are self-recommending and others are self-undermining.

• Say that U is nowhere stable iff, according to U , every probability dis-
tribution is self-undermining.

6We are assuming here that the ideal agent deliberates at infinite speed and that time is
continuous.
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We now consider the following question: which of these types of utility function
might an epistemically responsible agent hold?

Utility function that are nowhere stable are pathological. In fact they are
worse than pathological — it is actually impossible for an ideally rational agent
to hold such a utility function, since there is no probability distribution that
an ideally rational agent with a nowhere stable utility function could coherently
hold. (Neither, though, can he refrain from holding any probability distribution:
that would contradict our assumption of probabilism.)

At first sight, perhaps, partly stable utility functions (perhaps) also seem
to be pathological for the same reason — the notion of an ideal agent who
held a partly stable utility function but also held a credence distribution that
that utility function deemed self-undermining would be similarly contradictory.
A moment’s reflection, however, shows that there is no contradiction here. A
partly stable utility function merely amounts to a constraint on the credence
distributions that the agent may coherently hold; there is no literal inconsistency
in holding a partly stable utility function and being an ideal expected-utility
maximizer, provided that one’s credence distribution is at all times one that that
utility function deems self-recommending. It will turn out that the coherence
of partly stable utility functions alone prevents us from claiming categorically
that conditionalization maximizes expected epistemic utility.

The distinction between (merely) everywhere stable utility functions on the
one hand, and those that are everywhere strongly stable on the other, also de-
serves comment. An agent who holds a utility function that is everywhere stable
but fails to be everywhere strongly stable may find himself with a choice be-
tween constant acts that are equally good by his own lights: he currently holds
credence distribution p, but there may be some distinct credence distribution q
such that, by the lights of p itself, kp and kq are of equal (optimal) expected
epistemic utility. When this occurs, the agent can stick to his current distribu-
tion p, but it will be equally consistent with ideal rationality if he chooses to
move to q on a whim. An agent whose utility function is everywhere strongly
stable, on the other hand, never has any such free options; he must always, un-
less new evidence comes along, stick to his current credence distribution. (This
distinction will be of some importance in section 3.3.)

3.2 Theorem: Quasiconditionalization maximizes expected
epistemic utility

We give names to two updating policies in which we will have particular interest:

• Conditionalization from prior p∗ given experiment E (Condp∗

E , or Cond
for short) is defined (as usual) by

Cond : For all Ej ∈ E,Cond(Ej) = p∗(·/Ej).

• Quasi-conditionalization from prior p∗ given experiment E (QCp∗

E , or QC
for short) is, in general, a family of policies rather than a single updating
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policy. It is defined by

QC : For all Ej ∈ E,QC(Ej) = {q ∈ P : Cond(Ej)
R−→ q}.

That is, QC is the set of acts according to which the agent, on receiving ev-
idence Ej , moves, not necessarily to the conditional probability p∗(·/Ej),
but to some probability distribution q that is recommended by that con-
ditional probability (where ‘recommendation’ is as defined in section 3.1
above). (The reason QC does not in general prescribe a unique policy is
that p∗(·/Ej) may in general simultaneously recommend more than one
distribution.)

Theorem. Of all acts that are available given an experiment E, each quasi-
conditionalizing updating rule is optimal. That is,

∀Q ∈ QC,∀R ∈ AE, EUp∗(Q) ≥ EUp∗(R).

Proof. The expected utility of adopting an arbitrary updating policy R ∈ AE

is given by

EUp∗(R) ≡
∑
s∈S

p∗(s) · U(s,R(s)) (4)

≡
∑

Ej∈E

∑
s∈Ej

p∗(s) · U(s,R(Ej)) (5)

≡
∑

Ej∈E

∑
s∈Ej

p∗(s ∧ Ej) · U(s,R(Ej)) (6)

≡
∑

Ej∈E

p∗(Ej) · (
∑
s∈Ej

p∗(s/Ej) · U(s,R(Ej))) (7)

≡
∑

Ej∈E

p∗(Ej) · (
∑
s∈S

p∗(s/Ej) · U(s,R(Ej))) (8)

≡
∑

Ej∈E

p∗(Ej) · EUp∗(·/Ej)(kR(Ej)). (9)

Substituting a quasi-conditionalizing act Q ∈ QC for R in line (9) yields an
expression for the expected utility of adopting that Q as one’s updating rule:

EUp∗(Q) =
∑

Ej∈E

p∗(Ej) · EUp∗(·/Ej)(Q(Ej)). (10)

But, by the definition of quasi-conditionalization, we have, for all rules R ∈
A, all quasi-conditionalizing rules Q ∈ QC and all events Ej ∈ E,

EUp∗(·/Ej)(Q(Ej)) ≥ EUp∗(·/Ej)(R(Ej)) (11)
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Combining (9), (10) and (11) and noting that the coefficients p∗(Ej) are all
nonnegative, we have

∀Q ∈ QC,∀R ∈ AE , EUp∗(Q) ≥ EUp∗(R). (12)

It is striking that this theorem involves no assumptions whatsoever about
the nature of the utility function — yet we seem (at first sight) to have given a
name to a particular set of epistemic acts (viz. QC) and proved that every act
in that set is optimal.

If this were really what we had done, it should arouse puzzlement in anyone
acquainted with ‘ordinary’ (i.e. prudential, non-cognitive) decision theory —
it is a familiar point from that theory that tastes are encoded in the utility
function, so that one cannot prove anything about the EU of a given act without
constraining the utility function. (There is no hope, for instance, of proving
from decision theory alone that a rational agent tries to avoid electric shocks;
I may be perfectly ‘rational’, in the sense that I satisfy the axioms of decision
theory, but happen to like electric shocks, and accordingly assign high utility to
situations in which I receive such shocks.) But our above ‘first-sight’ gloss on the
content of our theorem is, of course, not quite correct. We have not shown, in
the absence of any information about the utility function, that some particular
act is optimal. This is because, in the absence of information about the utility
function, we have no idea what the recommended probabilities {Q(Ej)}Ej∈E

are. In other words, while we know (without knowing anything about the utility
function) that all acts that meet the definition of QC are optimal, we do not
know which acts (i.e., which functions from E to P) those are.

3.3 Corollaries: When conditionalization is optimal

The circumstances under which conditionalization (as opposed to ‘mere’ quasi-
conditionalization) is optimal are brought out by the following two corollaries
to our theorem.

Corollary 1. Conditionalization is optimal for a given experiment E if the
conditional probabilities {p ∗ (·/Ej) : Ej ∈ E} are self-recommending. If, in ad-
dition, at least one of the conditional probabilities is strongly self-recommending,
then conditionalization is strongly optimal.

Proof. As shown above (equation (9)), for an arbitrary rule R ∈ AE,

EUp∗(R) =
∑

Ej∈E

p∗(Ej) · EUp∗(·/Ej)(kR(Ej)) (13)

Therefore, in particular,

EUp∗(Cond) =
∑

Ej∈E

p∗(Ej) · EUp∗(·/Ej)(kCond(Ej)) (14)
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Suppose now that the conditional probabilities {p∗(·/Ej) : Ej ∈ E} are self-
recommending. That is, suppose that we have, for all Ej ∈ E and all probability
distributions q ∈ P,

EUp∗(·/Ej)(kCond(Ej)) ≡ EUp∗(·/Ej)(kp∗(·/Ej)) ≥ EUp∗(·/Ej)(kq). (15)

In particular, for all updating policies R ∈ AE,

EUp∗(·/Ej)(kCond(Ej)) ≥ EUp∗(·/Ej)(kR(Ej)). (16)

Thus for all convex combinations of such quantities, Cond weakly dominates
R, and hence (combining (13), (14) and (16)) we have, for all updating policies
R ∈ AE,

EUp(Cond) ≥ EUp(R) (17)

— that is, conditionalization is optimal.
If, in addition, at least one of the conditional probabilities is strongly self-

recommending, then strict inequality holds — that is, conditionalization is
strongly optimal.

Corollary 1 establishes that conditionalization is optimal whenever the con-
ditional probabilities are self-recommending. Now, one who hoped to justify
conditionalization within a decision-theoretic framework really could not want
stronger support from the mathematics, for the following reason. If the condi-
tional probabilities are not self-recommending, conditionalization is obviously
not even a live option for our agent — for then, conditionalization advises him
to move to probabilities that he never would be able to hold, ‘no matter how
he arrived at them’, while remaining an expected utility maximizer. (Cf. our
discussion of self-recommendation in section 3.1.) It would be somewhat wor-
rying if our proof insisted even then that conditionalization was optimal. So,
corollary 1 conditionalization is optimal whenever conditionalization is even a
live option. We stress that this follows from the decision theory alone, with no
constraints on the form of the epistemic utility function. This is our first result
in support of the normative status of conditionalization.

Our second corollary concerns a second gloss we might put on our result, if
we are prepared to accept normative constraints on the form of the epistemic
utility function:

Corollary 2. If the agent’s epistemic utility function U is everywhere stable,
then conditionalization is optimal. If U is everywhere strongly stable, then
conditionalization is strongly optimal.

Proof. This is an immediate consequence of Corollary 1.

If it is a rationality constraint that one’s epistemic utility function be ev-
erywhere strongly stable (so that one’s utility function alone does not preclude
holding any particular probability distribution, and always advises one strictly
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to stick to one’s current credence distribution until and unless new evidence
comes along), then Corollary 2 demonstrates that, for any rational agent, con-
ditionalization is the unique updating policy that maximizes expected epistemic
utility. This would be a second statement in favor of conditionalization. We
find this rationality constraint plausible, but we offer no argument for it here.7

(The reader may or may not find that she accepts it without argument.) If the
constraint is not accepted, our categorical claims are restricted to those we drew
above from Corollary 1.

4 A plausible epistemic utility function

So far, we have for the most part focussed on certain abstract features (every-
where/somewhere and weak/strong stability) of the epistemic utility function;
such abstract features have sufficed to state and prove our claims. However,
in order better to understand what is going on, we need to consider what a
plausible utility function exhibiting some of these features might actually look
like. In section 4.1 we take a brief look at one class of plausible (everywhere
strongly stable) epistemic utility functions, and consider how functions in that
class could encode various epistemic values. In section 4.2 we comment briefly
on a particular partly stable utility function, the ‘linear utility function’, that
has appeared in the literature. We answer an objection that the possibility of
partly stable utility functions undermines the whole decision-theoretic approach.

4.1 An everywhere strongly stable utility function

Consider the following utility function schema:

General quadratic utility function : UGQ(s, p) = −
∑
X⊆S

λX(χX(s)−p(X))2,

where χX(s) is 1 if s ∈ X and zero otherwise, and the λX are constant coeffi-
cients. (This is a generalization of the utility function (1) we used in our toy
model in section 2.1.) We will briefly discuss how epistemic utility functions of
this form do justice to various epistemic norms.

7Wayne Myrvold has pointed out (personal correspondence) that the fact that we do have
several other arguments to the effect that (within the domain of applicability of Bayesian
modeling) conditionalization is always rationally required is relevant here. (Some of these
arguments were cited in section 1.) The expected-utility approach with no rule against partly
stable utility functions, since it permits updating rules other than conditionalization, is in
tension with those results. If any of those other arguments is sound (a question we have not
addressed), it may also contain the seeds of an explanation from the perspective of cognitive
decision theory of how and why partly stable utility functions should be disallowed. We have
not pursued this line of research.
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Stability. For arbitrary choices of the coefficients λX , UGQ is everywhere
strongly stable. 8 9

A concern for truth. In the first instance, UGQ favors placing credence 1
in the true state. This is a property of any stable utility function10, and a
fortiori of UGQ. More generally (and less rigorously), other things being equal,
UGQ favors increasing one’s credence in the true state. (We can see the latter
by noting that UGQ(s, p) is always an increasing function of p(s), and always a
decreasing function of p(s′) for s′ 6= s.)

Discriminating among falsehoods: taking account of verisimilitude.
A different stable epistemic utility function (viz. U(s, p) = log p(s)) encodes
a sort of epistemic perfectionism: according to that utility function, epistemic
utility depends only on credence in the true state. Such perfectionism may, on
occasion, be appropriate. But, often, we will want instead to judge one credence
distribution as epistemically better than another even when both assign the
same degree of belief to the true state, on the grounds that the first concentrates
its remaining credence among (false) states that are closer to the truth than
does the second. Our sample schema UGQ can take account of the value of
verisimilitude, by a judicious choice of the coefficients λX : we simply assign
high λX when X is a set of ‘close’ states.

Informativeness. Discussions of the epistemic desirability of holding infor-
mative or contentful beliefs are important in acceptance-based epistemologies,
as opposed to the purely probabilist epistemology under consideration here –
given that you’re going to accept (say) some true proposition, it is epistemically
better to adopt a more informative one, i.e. a stronger one. In the proba-
bilist case, however, the epistemic value of informativeness is already captured
by attaching epistemic value to truth and to verisimilitude – an agent will do
better in terms of truth-credence and verisimilitude by peaking his probability

8Proof: in each case, use Lagrange multipliers to extremize the expected utility∑
s∈S p(s)U(s, p′) w.r.t. p′, subject to the constraint

∑
s∈S p′s = 1; thence show that ex-

tremization occurs at p′ = p.
9Stable utility functions have been discussed in the statistics literature — outside the

context of cognitive decision theory, but in a situation with identical mathematical desiderata
— where such functions are known as ‘proper scoring rules’. See, e.g., Lad [3], Savage [7], for
discussion and for lists of other such functions.

10Proof: Consider the totally peaked probability distributions, that assign probability 1 to
some state s ∈ S (and, of course, probability zero to all others s′ 6= s). Relative to such a
probability distribution, the expected epistemic utility EUp(p′) of an arbitrary probability
distribution p′ just is the utility U(s, p′) of holding p′ when state s obtains. But, if U is
stable, then EUp(p′) must be highest when p′ = p. Thus, U(s, ·) must be highest for the
probability distribution p that is totally peaked on the state s. That is, if U is to be stable,
U must encode the fact that the most epistemically favored probability distribution, when an
arbitrary state s obtains, is the probability distribution that assigns credence 1 to the state
s. That is, whatever the true state of the world, a maximum degree of belief in the true state
is valued higher than any other credence distribution by any stable utility function.
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distribution near the true state than he would by having a ‘flatter’ probability
distribution.

4.2 A partly stable utility function/Defense of cognitive
decision theory

The following partly stable epistemic utility function has been discussed by
Horwich [2]:127-9, Maher [5]:177-9, and Weintraub [12]:

Linear utility function : UL(s, p) = p(s).

This utility function has an appealing mathematical simplicity, but, as Maher
and Weintraub emphasize, it leads to very odd results. Specifically, the only
credence distributions that are self-recommending with respect to this utility
function are the totally peaked credence distributions (p(s) = 1 for some s ∈ S),
and the indifferent distribution (p(s) = 1

n for each of n states, n ≤ |S|; again
we assume that S has finite cardinality). If one were to hold any other credence
distribution, one would maximize EU by shifting to a credence distribution that
is assigns credence 1 to some disjunction of states that one currently considers
most likely.11

What are we to make of this utility function? Maher and Weintraub think
that it contains the seeds of an argument by reductio against the proposition
(CDT), which the approach of present paper has taken as a premise:

CDT The dynamics of rational credence-distribution updating can
be captured by a cognitive decision theory that recommends
maximization of expected epistemic utility.

Maher’s argument, with which Weintraub agrees, can be reconstructed as
follows:

P1 There exist (in logical space) rational agents who hold partly
stable utility functions (SSUFs).

P2 If CDT is true, then, for any agent who holds a SSUF, sponta-
neous shifts of credence distribution are sometimes rational.

C1 If CDT is true, then there exist (in logical space) rational agents
who might sometimes perform shifts. (from P1, P2)

P3 Performance of shifts (acceptance of prohibitions) is necessarily
irrational: that is, nowhere in logical space are there rational
agents who might sometimes perform shifts.

11The following feature of this utility function should also be noted: it is not possible, by
conditionalizing on any proposition, to move from a probability distribution that (according
to UL) is self-recommending to one that is not. We have not, in fact, been able to find any
partly stable utility functions that do not possess this feature. If it could be shown that none
exist, this would obviously strengthen our result (cf. our comments at the end of section 3).
We have not been able to find any, but we have no non-existence proof.
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C2 CDT is not true. (from C1, P3)

Clearly, if this argument were sound, the central claim of this paper (that
Bayesians can justify conditionalization by an appeal to maximization of ex-
pected epistemic utility) would be utterly undermined.

The argument is valid. Our objection to it is that either P1 or P3 is false,
although we are not committed to a view as to which. We choose to insist on the
correctness of the cognitive decision-theoretic approach, and argue by dilemma.
Either shifts could be rational, or they could not. If they could, P3 is false,
and so the argument fails. If they could not, P1 is false, and so the argument
fails. In other words, either partly stable utility functions are to be ruled out
as irrational, or they and their consequences are acceptable; in neither case is
the CDT programme itself impugned.

Maher is aware of the possibility of this response. Since he insists absolutely
on the irrationality of shifts (a view with which, as we noted in section 3.3 above,
we are not unsympathetic), he gives serious consideration only to the possibility
of rejecting P1. Maher’s objection to this move is that it is ‘completely ad hoc’,
since such a constraint on utility function lacks ‘any prior plausibility’ (ibid,
p.179; our emphasis in boldface). Our disagreement with Maher is method-
ological: we don’t see why prior plausibility (i.e. prior to thinking through the
consequences of adopting a partly stable utility function) should be required for
rejection of P1. In any case, the problem with rejecting CDT in response to
this argument is that that rejection is no less ad hoc: we are left with no con-
vincing explanation of why one should maximize expected utility when choosing
whether or not to go for a swim and when choosing whether or not to accept
the proposition that humans are descended from apes, but not when choosing
which credence distribution to adopt.

Incidentally, we would have a paradox for the decision-theoretic approach if
we thought both that partly stable utility functions were pathological and in
addition that no everywhere-stable utility functions existed. But, as we have
illustrated by example above, this latter condition does not obtain.

5 Conclusion

By modeling the Bayesian agent’s choice of updating policy as a decision prob-
lem within a cognitive decision theory, it is possible to provide a justification
for conditionalization that appeals directly to the idea that epistemic rationality
consists in taking steps that can reasonably be expected to lead to epistemically
good outcomes: under independently motivated constraints, conditionalization
maximizes expected epistemic utility.
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