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Macrolides constitute an important group of antibiotics that target
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Scheme 1. GT Remodeling of Oleandomycin 1 and Erythromycin

primarily Gram-positive prokaryotes and collectively have been 63

classed as “the last line of defense” against rapidly emerging
resistant pathogen straih§hey comprise a macrocyclic polyketide
backbone to which glycans are appended that alter activity,
specificity, and resistance mechanistnsAntibiotic glycan alter-
ation (so-called glycorandomizatior) is a potentially powerful

strategy in combating emerging bacterial resistance. Rare, elegant

examples ofn vitro glycan modification of antibiotics have largely
focused on cyclic nonribosomal peptides, such as vanconiy&n.
Although in zivo approaches have been explotéd? to our
knowledge, non vitro studies have examined macrolide antibiotics.
Glycosyltransferases (GTs) are powerful glycosylation catalysts
however, their exquisite substrate specifi&ity! typically curtails

application to appending preferred sugar donor to preferred aglycone

acceptor. Indeed, while some antibiotic-modifying GTs, such as
GtfE'* show good variance in sugar substrates, other attempts to
identify flexible GTs have instead highlighted stringerichhere

is a need for GTs with broad tolerance as tools in antibiotic remod-
eling and methods for their ready identification and characterization.
The inverting, family 1 (GT-1% GTs from Streptomyces didans
(MGT)2 and oleandomycin1j-producing bacteriun®. antibioti-
cug425 (OleD, Olel) catalyze glucose (Glc) transfer from UDP-
Glc to 1, which inactivates it. Their differing specificiti&€sand
membership of GT-1 suggested utility, little was known, however,
about full substrate tolerance. Recombinant expre3siand
purificatior?® from Escherichia coliC41(DE3) gave valuabf§ high
protein levels {40 mg/L)3 Full kinetic parameters were deter-
mined using mass spectrometric monitoffhgpupled with pseudo-
spiking calibration, allowing ready acquisition of biocatalytic data.
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indicated that in addition td, flavanols, coumarins, and other
aromatics, such as 3,4-dichloroaniline, were acceptors for OleD,
Olel, and MGT (Figure 1). This surprisingly broad acceptor
plasticity?” indicated that these GTs have not evolved to recognize
a precise macrolide but rather planar, cyclic, hydrophobic molecules;
as such, they display the relaxed hydrophobic specificity of the
xenobiotic-modifying GTs prevalent in family GT-1. Indeed, sugar
transfer to oleandomycin modifies OH-2 of the hydrophobic
deoxysugar desosamine. OleD and MGT also showed activity
toward benzyb-mannoside33) bearing a hydrophobic aglycone;
all three failed with more hydrophilic carbohydrate acceptors.
Interestingly, the novel acceptor specificity for coumarins discov-
ered here is similar to that of GT NovM in the biosynthesis of
novobiocin OleD, Olel, MGT created aminocoumarin antibiotic
analogue3-Glc (Figure 1) with enhanced kinetic efficiency over
NovM synthesis of3-noviose3®

Plasticity in both sugar and nucleotide recognition was probed
with 18 natural/non-natural dondP$1-3° against identified hit
acceptors (Figure 1a). These indicated (Figure 1b) tolerance by all

Reciprocal regression analysis employed rapid equilibrium assump-grg for ring O alteration, by OleD for varied functionality at C-5

tion and assumed no a priori substrate role. Olel operates via a

compulsory ordered BiBi mechanismia/Kg ~ 20%9) in which 1
binds first33 and kinetic constants gave good to fair agreedfeht
with previous partial kinetic characterization [Olei;;;0.042 s,
K|(1) 18, KM(l) 4.8, KM(UDPGIc) 97‘LLM] OleD and MGT [O|ED: kcat
0.044 s, K1y 165,Kyuppaic) 182, Ky 32 + 8, Kuwupraic) 36uM;
MGT: keat 0.8 s°%, Ky 172, Kyuppaic) 65, Kw1y 1305, Kmupraic)
497uM] operate via random BiBi mechanismsKa/Kg = 1.1 and
2.6, respectively§® Encouragingly Ky values for MGT> OleD

or Olel suggested nonspecificity and operation in vivo at higher
ambient substrate concentrations than that of OleD and Olel.

Full substrate specificity was probed through library screeting

transfer from 18 sugar donors to 64 representative accépord
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and by OleD and Olel for configurational flexibility at C-4 (e.g.,
ability to transfer Gal/Ara). Only Olel showed activity with UDP-
Gal andl. OleD shows some tolerance of base variation<£(,

U — T with Xyl). All three enzymes are largely restricted in C-2,3
configuration, although some activity with non-natural UDP-Man
but not GDP-Man with OleD and MGT suggested a role for the
nucleotide as a determinant of specificity. OleD also transferred
UDP-GIcNAc (to coumarin accepto®s4, and23 but notl). Pseudo
single substrate kinetics [OleDKywuppsse) 37.8 uM, Kea 0.0033
Sﬁl; Olel: KM(UDPSSG) 129//£M, kcat0.0lS Sl; MGT: KM(UDPSSGIC)
200uM, keat 1.8 s°1, [1] = 50 uM] for the most active non-natural
donor, UDP-5S-Glc, revealed that all three GTs have smadigr
values than for UDP-Glc, despite the change of endocyclic
heteroatom. More dramatk:,; effects were observed: Olel and
OleD are 3- and 10-fold lower, while MGT is 2-fokigher. The
transition state of transfer is therefore better stabilizeddsylfur

10.1021/ja051482n CCC: $30.25 © 2005 American Chemical Society
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Figure 1. (a) Acceptor and (b) donor substrates of OleD, Olel % MGT. In
(b), percent values indicate yields (color-coded by enzyme) for transfer of
non-natural sugars (structural variation highlightedlLto

in the order MGT> Olel > OleD, perhaps reflecting different
conformational itinerary response to smaller-G—Cg bond angle
and ring puckerint or different levels of developing C-1 charffe.
This highlights UDP-5S-Glc as both mechanistic probe and non-
natural donor in remodeling.

To see how this exciting substrate tolerance could be applied to
other antibiotics, we also screened all donors against erythromycin
(63) and tylosin 64) that contain similar dimethylaminosugar
acceptor moietieg3¢p-desosamine and 4-OH varigfip-mycami-
nose, respectively) to oleandomydinAlthough Olel showed little
activity, both OleD and MGT remodeled both antibiotics with Glc
and Xyl (OleD: 64-Glc 55%, 63-Glc 74%, 63-Xyl 65%; MGT:
64-Glc 51%, 64-Xyl 10%, 63-Glc 58%,63-Xyl 9%).
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