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Direct radical functionalization of native 
sugars

Yi Jiang1,2,3,7, Yi Wei1,7, Qian-Yi Zhou1, Guo-Quan Sun1, Xia-Ping Fu2,3, Nikita Levin2,3, 
Yijun Zhang1,4, Wen-Qiang Liu1, NingXi Song1, Shabaz Mohammed2,5,6, Benjamin G. Davis2,3,5,8 ✉ 
& Ming Joo Koh1,8 ✉

Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl 
groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi- 
step protecting-group strategies3 to convert these renewable feedstocks into reagents 
(glycosyl donors) to make glycans. The direct transformation of native sugars to 
complex saccharides remains a notable challenge. Here we describe a photoinduced 
approach to achieve site- and stereoselective chemical glycosylation from widely 
available native sugar building blocks, which through homolytic (one-electron) 
chemistry bypasses unnecessary hydroxyl group masking and manipulation. This 
process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl 
donor, followed by radical-based cross-coupling with electrophiles on activation with 
light. Through selective anomeric functionalization of mono- and oligosaccharides, 
this protecting-group-free ‘cap and glycosylate’ approach offers straightforward 
access to a wide array of metabolically robust glycosyl compounds. Owing to its 
biocompatibility, the method was extended to the direct post-translational 
glycosylation of proteins.

Widely distributed across the three domains of cellular life forms, car-
bohydrates play pivotal parts in many biological processes4–7. Nature 
often provides greatly altered function simply through the attachment 
of a glycosyl moiety. Because of their importance, substantial efforts 
have been devoted to accessing these saccharides and their conju-
gates to better understand their properties, functions and potential 
disease-related roles and to enable the discovery of sugar-based thera-
peutics8–10. The difficulty of extracting notable quantities of pure sam-
ples from nature has prompted chemists to secure most saccharides by 
synthetic means. To this end, non-enzymatic chemical glycosylation11–15 
represents the cornerstone of carbohydrate chemistry by offering a 
reliable avenue to assemble a vast array of natural and non-natural 
glycoside entities. However, unlike enzymatic machineries that can 
mediate glycosylation by using unprotected polyhydroxylated glycosyl 
donors with excellent regiocontrol16,17, established chemical glycosyla-
tion methodologies are less precise and typically require cumbersome 
protecting-group strategies3,11–15 to overcome the problem of site selec-
tivity. These complications are highlighted in the existing synthetic 
routes to C-glycosyl compounds13, a parallel carbohydrate class that 
is rarer in nature but has gained increasing prominence as robust and 
often more biologically potent surrogates of O-glycosides in developing 
medications to treat cancer, diabetes and other illnesses18,19.

In contrast to the highly site-selective nature of enzymatic 
C-glycosylation (Fig. 1a), the state-of-the-art advances in non-enzymatic 
chemical C-glycosylation often require multi-step reaction sequences 
(hydroxyl group protection, functionalization and deprotection) involv-
ing delicate control and/or harsh reaction conditions to transform fully 

unprotected native sugars (the most abundant form in nature) into 
tailored glycosyl precursors containing anomeric leaving groups such 
as halides20–24, esters25–27, sulfoxides28,29 or sulfones30–32, setting the stage 
for the ensuing carbon–carbon bond-forming reaction to deliver the 
desired unprotected C-glycosyl compound only after eventual depro-
tection (Fig. 1b). The practical drawbacks and inefficiencies of these 
approaches consequently limit their use in synthetic glycochemistry 
and prevent further applications under intricate biological conditions. 
Thus, enacting a regime that allows direct coupling of native sugars 
for broad-scope glycosylation33 to access stereoisomerically pure 
C-glycosyl compounds and other hydrolytically stable and medicinally 
important variants (such as S- and Se-glycosides)34–36 as well as C-linked 
glycoproteins is a longstanding goal in glycoscience research. However, 
this has remained unknown owing to numerous challenges associated 
with efficiency, selectivity and biocompatibility.

Inspired by reports of biological S-glycosylation in which 
S-glycosyltranferases mediate the formation of stable S-glycosidic 
linkages using unprotected nucleotide sugars generated from their 
native variants by regioselective anomeric phosphorylation37,38, we 
reasoned that a biomimetic approach could be adopted to preferen-
tially activate and substitute the anomeric hydroxyl group (hemiac-
etal) in a native sugar in its cyclic form (capping). This would afford 
a thioglycoside intermediate that, under suitable conditions, could 
undergo stereocontrolled desulfurative cross-coupling39–41 with an 
appropriate reagent in a single operation (glycosylation). Just as in 
nature, the activated glycosyl donor that was temporarily generated 
remains traceless. However, several challenges have to be addressed 
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for the success of this ‘cap and glycosylate’ strategy. First, the multiple 
hydroxyl groups must be distinguished to ensure selective masking 
of the hemiacetal to form a transient thioglycosyl donor. Second, the 
donor must be sufficiently reactive to participate in cross-coupling 
without competitive interference or reaction on other hydroxyl sites, 
which would otherwise result in undesired reactions and intractable 
mixtures. Added to these is the challenge of controlling the stereo-
chemical outcome of anomeric functionalization in the context of a 
complex, polyhydroxylated carbohydrate residue.

Here we report a metal- and protecting-group-free blueprint that 
enables the direct anomeric functionalization of unprotected monosac-
charides and oligosaccharides in their native forms by radical-based 
cross-coupling with various electrophiles under mild photoirradiation 
conditions (Fig. 1c). This ‘cap and glycosylate’ approach eliminates the 
need for pre-installation and removal of protecting groups, solving 
an enduring problem in the field and providing a general platform to 

accelerate the preparation of robust carbo-, thio- and selenoglycosyl 
compounds as well as O-glycosides in high regio- and stereoselectiv-
ity. We also show that the protocol is amenable to the direct chemical 
synthesis of unprotected C-glycosylproteins in a post-translational 
manner that is complementary to the analogous biological O- and 
N-glycosylation processes.

Considering the susceptibility of certain transition metals to inhibi-
tion by polar hydroxyl groups42, we sought to engineer a metal-free pro-
tocol that harnesses the reactivity of electron-deficient alkyl sulfides 
to undergo desulfurative transformations on photoactivation39–41. We 
first evaluated reaction parameters that promote regioselective nucleo-
philic substitution (capping) using d-glucose 1 as the model substrate 
(Supplementary Table 3). Taking advantage of the greater acidity of 
the anomeric OH with respect to other hydroxyl units43, various acti-
vating agents (R−LG) were examined to convert 1 to its bench-stable 
2,3,5,6-tetrafluoropyridine-4-thioglycoside derivative 2 under weakly 
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basic conditions (Fig. 2a). In the presence of commercially available 
2-chloro-1,3-dimethylimidazolinium chloride (DMC) as activator and 
triethylamine as base, 2 was obtained in 85% yield (72% isolated yield) 
and more than 95:5 β:α ratio at 0 °C within 2 h. In our hands, 2 (white 
solid) could be stored in air on the bench over months without notice-
able decomposition. It is worth noting that the C1 stereochemistry of 
this S-glycosyl donor is inconsequential as it will be transformed into 
a glycosyl radical species during the course of C−C bond formation in 
the subsequent step (Fig. 3a). Other analogues of DMC (3 and 4) led to 
markedly diminished yields, whereas other commonly used reagents 
such as chlorophosphonium salt 5 and a combination of 2-chloro-4,6-
dimethoxy-1,3,5-triazine (CDMT) and N-methylmorpholine (NMM) 
failed to promote the reaction.

With DMC identified as the most effective activator, we used the 
nucleophilic substitution conditions to synthesize not only 2 but also 
a range of unprotected (hetero)aryl thioglucosides (6−9) for com-
parison. To drive glycosylation, we subjected the thioglucosides to 
a reaction with acrylate 10 under visible light illumination30. After an 
extensive survey of conditions (Supplementary Table 4), we discovered 
that 2 underwent desulfurative C−C coupling to deliver unprotected 
C-alkyl glucoside 11 in 96% yield (82% isolated yield) and more than 
95% α selectivity using a combination of Hantzsch ester as reductant, 
1,4-diazabicyclo[2.2.2]octane (DABCO) and dimethyl sulfoxide (DMSO) 
as solvent under blue LED irradiation at ambient temperature (Fig. 2b). 
To our knowledge, this reaction represents the first successful use of 
2,3,5,6-tetrafluoropyridine-4-thioglycoside as a new class of glycosyl 
donor in chemical glycosylation.

By contrast, poor conversion was observed with the less redox-active 
S-glucosides derived from other less electron-withdrawing (hetero)aryl 
thiols (6−9), highlighting the importance of the fluorinated heteroaro-
matic moiety for photoinduced cross-coupling39–41. This was supported 
by cyclic voltammetry studies showing that 2 has the least negative 

reduction potential (Supplementary Figs. 2–6), which is comparable 
to that of a redox-active heteroaryl glycosyl sulfone30. By contrast, 
excluding the light source, Hantzsch ester or DABCO was detrimental 
to the reaction, and changing the base or solvent led to lower yields. To 
demonstrate the power of the ‘cap and glycosylate’ approach by trace-
less activation, we showed that α-11 could be generated from 1 in a single 
sequence without the need for isolating the S-glycosyl intermediate 2.  
The overall step efficiency and yield (64% yield and 52% isolated yield) 
offer marked advantages over previous chemical C-glycosylation 
approaches that require multiple steps (Fig. 1b).

Experiments were conducted to gain insight into the individual 
processes for native sugar activation and cross-coupling. As shown 
in Fig. 2a, nucleophilic substitution of d-glucose 1 afforded 2,3,5,6- 
tetrafluoropyridine-4-thioglycoside 2 in 85% yield (72% isolated 
yield) and more than 95:5 β:α ratio. On the contrary, we found that the  
corresponding thioglycoside 13 was secured in 44% yield (30% isolated 
yield) and more than 95:5 α:β ratio from d-maltose 12 under the same 
established conditions (Fig. 3a). In solution, the α and β anomers of 
native sugars (1, 12) can interconvert and exist in equilibrium; each ano-
mer individually reacts with DMC before undergoing stereoinvertive 
nucleophilic displacement43 by the thiol (Supplementary Fig. 7). Alter-
natively, the 2-OH group of the DMC-activated β anomeric intermediate 
may engage in neighbouring group participation by an intramolecular 
nucleophilic attack to generate a 1,2-anhydro species43, which is sus-
ceptible to site-selective ring cleavage by the thiol nucleophile. This 
pathway is probably insignificant in the reaction leading to 13, given 
that β-13 was detected in minor amounts. For other saccharides (Fig. 4), 
the various pathways for nucleophilic substitution may be favoured to 
different extents in the reaction system43. The structure of the 2,3,5,6- 
tetrafluoropyridine-4-thioglycoside derived from d-mannose was 
confirmed by X-ray crystallographic analysis (Supplementary Infor-
mation section 7).
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Subjecting 2 and 13 separately to standard cross-coupling con-
ditions with an acrylate gave 11 and 15, respectively, both of which 
possess the same sense of anomeric selectivity (Fig. 3a). This notably 
implies that, unlike heterolytic glycosylations, the C1 stereochem-
istry of the S-glycosyl donor is inconsequential, highlighting the 

distinct advantage of the present strategy in transforming mixtures 
of unprotected native sugar isomers, through their thioglycoside 
derivatives, into stereoisomerically pure glycosides in a streamlined 
fashion. In a separate study, the addition of exogenous (2,2,6,6- 
tetramethylpiperidin-1-yl)oxyl (TEMPO) inhibited the photoinduced 
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transformation of 2 to 11 (Fig. 3b). High-resolution mass spectrom-
etry (HRMS) analysis revealed the formation of a complex that can be 
ascribed to a TEMPO-glycoside adduct 16, providing evidence that a 
sufficiently long-lived glycosyl (anomeric) radical species is generated 
during the process. These processes are in contrast to heterolytic gly-
cosylations that essentially lack the formation of a clear intermediate 
species (for example, glycosyl cation).

We further explored the nature of the photoinduced reaction (using 
2 as the model substrate) through ultraviolet–visible absorption (UV–
vis) spectroscopy (Fig. 3c). Independent absorption spectra of 2 and 
DABCO revealed bands largely in the UV region, and a mixture of these 
two components led only to a small redshift that extends into the vis-
ible region (>400 nm). By contrast, a DMSO solution of Hantzsch ester 
exhibited strong absorption in the visible region, but no noticeable 
changes were observed with a mixture of Hantzsch ester and DABCO. 
A mixture of 2 and Hantzsch ester showed a slight bathochromic shift, 
which was amplified when 2, Hantzsch ester and DABCO were com-
bined together in solution. These results indicate the generation of a 
putative ternary complex44,45 between 2, Hantzsch ester and DABCO, 
which is proposed to absorb visible light and undergo fragmentation 
to the glycosyl radical.

The studies presented here support a mechanism as shown in 
Fig. 3d. Site-selective capping of the more acidic anomeric hydroxyl 
motif by DMC forms an activated leaving group that undergoes 
facile nucleophilic attack by 2,3,5,6-tetrafluoropyridine-4-thiol 
under basic conditions, driven by concomitant generation of 1,3- 
dimethylimidazolidin-2-one (DMI) as a by-product43. Formation of 
a 1,2-anhydro species before nucleophilic substitution could also 

occur and cannot be completely ruled out (Supplementary Fig. 7). The  
resulting thioglycoside intermediate is postulated to associate with 
Hantzsch ester and DABCO in solution, affording a ternary complex 
that can absorb visible light to trigger photoinduced electron transfer 
(PET)46. Consistent with previously documented reactions39–41, the 
highly electrophilic nature of the fluorinated heteroaryl motif ren-
ders the thioglycoside sufficiently redox-active for PET. This delivers 
dihydropyridine radical 17 and a radical anion 18, which is prone to des-
ulfurative fragmentation to give a glycosyl radical species and 2,3,5,6- 
tetrafluoropyridine-4-thiolate (the conjugate acid was detected in the 
reaction mixture). Subsequent reaction of the glycosyl radical with an 
electrophilic cross-coupling partner, facilitated by 17, proceeds in a 
stereoselective manner under kinetic control30,47,48 to give the desired 
unprotected glycoside.

The generality of our protecting-group-free protocol was high-
lighted by the wide spectrum of native mono- and oligosaccharides 
that could be reliably transformed into fully unprotected C-alky gly-
cosyl compounds (Fig. 4) through their 2,3,5,6-tetrafluoropyridine-4- 
thioglycoside precursors, which were either isolated or generated 
in situ and used (without purification) for cross-coupling. Repre-
sentative examples include pyranoside products constructed from 
biomass-derived monosaccharides (19−21, 24), rare sugars (22, 23) 
and non-natural l-glucose (25). More complex glycans from natural 
sources also served as effective substrates to deliver the corresponding 
C-alkyl glycosyl compounds (15, 26−29) in good efficiency. Across the 
board, good to excellent stereocontrol was observed.

Besides α,β-unsaturated carbonyl compounds, other alkenes 
were investigated as cross-coupling partners (Fig.  5a). Densely 
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functionalized acrylates and acrylamides conjugated to biologi-
cally active compounds (30, 31), an aminosalicylate (32), an amino 
sugar (33) and oligopeptides (34−36) were compatible substrates, 
providing access to highly polar C-glycosylated conjugates bearing 
multiple acidic and basic sites. This offers a straightforward way to 
glycosylate complex molecules with native sugars for various appli-
cations, including the design of sugar-based peptidomimetics23,28. 
Other Michael acceptors such as vinyl sulfone (37), vinylphosphonate 
(38) and vinylboronate (40) as well as less electrophilic vinyl silane 
(39) and allyl acetate (41) also underwent efficient reaction to furnish 
the desired C-alkyl glycosyl adducts bearing functional groups that 
could serve as useful synthetic handles for further manipulations. 
Of particular note, cross-coupling was found to proceed even in the 

presence of a less-activated alkyl-substituted alkene (42). Metabolically 
stable pseudo-oligosaccharide49 building blocks such as C-glycosidic 
disaccharide 43 featuring two newly formed stereocentres could be 
expeditiously assembled with complete stereocontrol through reac-
tion with an exo-glucal as radical acceptor.

To showcase the versatility of the ‘cap and glycosylate’ approach in 
securing other categories of unprotected saccharides, we replaced the 
alkene coupling partner with other electrophilic reagents that could 
participate as radical acceptors. Using a haloalkene reagent (Fig. 5b), 
a C-alkenyl glycosyl compound (44) was successfully secured in high 
anomeric selectivity; this process is postulated to proceed through a 
glycosyl radical addition–reduction–β halide elimination pathway24. 
C-Heteroaryl glycosylation could also be realized by direct coupling 
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with heteroarenes under acid-free conditions, delivering unpro-
tected 45−47 selectively at the most electron-deficient sites, which 
is congruent with a previous report involving fully protected glycosyl 
radicals50. Our heteroarylation approach is complementary to a previ-
ously reported metallaphotoredox-enabled deoxygenative strategy 
(incompatible with native sugars) that involved pre-activation of an 
exposed anomeric hydroxyl followed by cross-coupling with a heter-
oaryl halide51.

Beyond C-glycosylation, we extended the protecting-group-free 
reaction manifold to the preparation of other glycomimetics such 
as selenoglycosides (Fig. 5c) and thioglycosides (Fig. 5d). Along with 
C-glycosyl compounds, these entities have found many applications as 
robust substitutes of the naturally occurring O-saccharides, thus effi-
cient ways to synthesize them in high stereochemical purity are highly 
desirable. Both unprotected Se-glycosides (48, 49) and S-glycosides 
(50−54) were accessible through reaction with diselenide or disulfide 
reagents52, respectively, comparing favourably with previous protocols 
that relied on laborious preparation of glycosyl precursors. It is to be 
noted that 50−54 were exclusively isolated as α anomers (compared 
with β anomers from nucleophilic substitution in Fig. 2). Similar to 
the C-glycosyl cases in Figs. 2 and 4, the observed stereochemical out-
come for 48−54 could be rationalized by the stabilizing orbital inter-
action between the nonbonding electron pair of the ring oxygen and 
the σ* of the incipient bond at the anomeric carbon in the transition 
state, as the glycosyl radical reacts with the electrophile47,48 (Fig. 3d). 
O-glycosylation53 with phenols could also be achieved by tuning the 
photoinduced cross-coupling conditions using iodide as reductant40,45 
(Extended Data Fig. 1).

Encouraged by our successful efforts in small-molecule glyco-
syl compound synthesis, we attempted to test our ‘cap and glyco-
sylate’ protocol in the synthesis of glycoproteins, which are known 
to mediate numerous essential biological processes. In nature, 
glycoproteins are typically formed by linking sugar units to O- or 
N-containing side chains of amino acid residues serine, threonine 
or asparagine using glycosyltransferases, such as the attachment of 
O-linked-β-d-N-acetylglucosamine (O-GlcNAc) to serine or threonine 
residues by O-GlcNAc transferase. However, this glycosylation can 
be reversed by intracellular glycosidases, and such a write-and-erase 
dynamic process makes it challenging to probe the biological func-
tions of glycoproteins. In this context, chemical approaches to gen-
erate non-cleavable glycoproteins (such as C-glycosylproteins) offer 
alternative and promising strategies for systematically investigating 
glycoprotein functions. Nevertheless, post-translational chemical 
glycosylation of proteins, particularly the attachment of sugar units 
to proteins by direct anomeric functionalization, is largely unex-
plored in synthetic carbohydrate and protein chemistry54. This may 
be ascribed to the lack of suitable unprotected glycosyl precursors 
that are stable yet sufficiently reactive, as well as the stringent require-
ments for biocompatible conditions, including water compatibility 
(which quenches heterolytic chemical glycosyl donors), ability to 
remain non-destructive to biological substrates and low reactivity 
towards the biogenic functional groups that are present in most bio-
logical environments55. Owing to the insolubility of Hantzsch ester 
in the necessary aqueous medium, photoinduced cross-coupling 
conditions were instead based on the formation of charge-transfer 
complexes between 2,3,5,6-tetrafluoropyridine-4-thioglycoside and 
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bis(catecholato)diboron (B2Cat2) as reductant41 (Supplementary 
Tables 6–8).

After identifying the optimal conditions (500 equiv. of B2Cat2, 4 °C, 
1 h, pH 8.0 in Tris buffer) as shown in Fig. 6, three mammalian glyco-
protein sugars (d-mannose, d-galactose and N-acetylglucosamine) 
were selected to react with dehydroalanine (Dha)-tagged proteins56,57 
with varying architectures and functions, including histone H3 (a 
small α-helical nuclear protein), PanC (Mycobacterium tuberculo-
sis pantothenate synthetase enzyme)58, PstS (a bacterial phosphate 
transport protein)59 and SsβG (an αβ8 TIM (triose-phosphate isomer-
ase) barrel enzyme)60. In the event, all the examined proteins were 
found to be competent glycosyl radical acceptors under the estab-
lished conditions, with the desired C-alkyl glycosylproteins secured 
in good to excellent yields across the board regardless of their size 
and fold. The stereochemistry of the newly formed C−C bond at 
the anomeric carbon (α selectivity) is presumed to be identical to 
that of small-molecule glycosylation (Fig. 4). Notably, histone H3–
GlcNAc–Ala10 generates a non-cleavable mimetic of the reported 
epigenetic mark GlcNAc–Ser10 (ref. 61); access to this glycoprotein 
conjugate may shed light on the poorly understood biological role of 
this post-translational modification process. Similar efficiencies were 
also observed in the reactions of different thioglycosyl donors with 
each given protein (about 85% conversion for eH3–Dha9, about 80% 
conversion for H3–Dha10, about 55% conversion for TEV H3–Dha2, 
about 80% conversion for PanC–Dha44 and about 70% conversion 
for PstS-Dha57). About 5% of a minor product featuring two units 
of GlcNAc addition was detected for PstS–GlcNAc–Ala57, which we 
ascribe to non-specific glycosylation of lysine residues62 (Supple-
mentary Table 9 and Supplementary Fig. 15). Similar to the examples 
in Figs. 2b, 4 and 5, traceless activation by in situ formation of the 
S-glycosyl intermediates could be implemented without compromis-
ing on protein glycosylation efficiency, thereby exemplifying the 
power of our protecting-group-free ‘cap and glycosylate’ approach 
allowing native sugars to be directly used for glycosylating proteins 
post-translationally.
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Extended Data Fig. 1 | Preliminary results in photoinduced O-glycosylation. Reaction scope using different sugars and phenols. Yields denote isolated yields. 
β:α Anomeric ratios were determined by 1H NMR and LC-MS analysis. TMEDA, tetramethylethylenediamine.
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