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Subtle evolutionary divergence within a protein family enables 
an enormous breadth of functional activities to occur within a 
versatile core scaffold1,2. The reutilization of common scaffolds 

in the design of de novo protein functions is also a current major 
goal. Several large architecturally related protein families are known, 
among which the group-transfer-enzyme proteins are of particular 
interest, because several use multiple modular domains upon which 
relevant functional groups are evolutionarily selected1. Multiple 
group-transfer-enzyme superfamilies, including certain acetyltrans-
ferases and glycosyltransferases (GTs), share a conserved β -sheet/ 
α -helical core upon which they exploit variable domains to generate 
selectivity toward (in some cases thousands of) substrates3,4. Some 
have binding sites that are readily understood by virtue of their nar-
row substrate range (for example, the lysine acetyltransferases that 
necessarily bind acetyl CoA and lysine) and hence are tractable to 
accurate substrate prediction5. In contrast, GTs represent the other 
extreme, in that their activities in vitro unite highly variable sub-
strates, and phylogenetic analyses have provided only limited insight 
into the evolution of substrate recognition and specificity6,7. This 
lack of insight is despite the high scaffold conservation among GTs8, 
which has been exploited in only select examples9, therefore sug-
gesting that subtle mutations in the background of these scaffolds 
have profound effects on chemical function. Thus, there remains a 
general difficulty in understanding the basis for active site plasticity 
within many enzyme families10, and GTs in particular represent a 
striking example of this limitation to understanding, which is exac-
erbated by a dearth of solved three-dimensional structures11. This 
example is made all the more pertinent by the existence of an excel-
lent database for GTs in the carbohydrate–active enzymes database 
(CAZy);4 indeed, the curators of CAZy have highlighted functional 
prediction as an important future goal4.

As a primary hurdle, there is currently no general informat-
ics strategy to accurately assess the functional effects of changes 

between key features of otherwise similar isoforms of biocatalysts in 
a manner equivalent, for example, to strategies to model and predict 
subtle stereoelectronic effects in homogeneous small-molecule-
catalyst performance12. Notably, de novo protein-design methods, 
although powerfully enabling the creation of rigid structural scaf-
folds for housing putative function, still fail regarding the finer 
details associated with the positioning of key catalytic residues13. 
Therefore, bridging this gap between the prediction and structure 
of precise active site features might yield valuable additional insight 
into the discovery of desired protein functional activities.

Here, we show that functional profiling (Fig. 1) using broad, 
unbiased sampling methods of a full GT family present in a sin-
gle species (the 107-member GT1 family of the plant A. thaliana) 
enables construction of chemical–bioinformatic models that encap-
sulate family-wide recognition patterns for both electrophilic sugar-
donor and nucleophilic acceptor substrates. We observed extreme 
scattering in activity patterns, as scored by phylogenetic linkage 
analysis alone, thus confirming that sequence-based assessments 
cannot explain substrate recognition. However, by incorporating 
relevant physicochemical parameters such as size, hydrophobicity, 
and nucleophilicity, predictive algorithms can be trained to anno-
tate function with high accuracy for these promiscuous dual-sub-
strate enzymes.

Results
Strategy for functional profiling of an enzyme superfamily. To 
date, informatics or computational strategies for predicting GT1 
enzyme activity have made only limited progress, as further exac-
erbated by the limited number of solved three-dimensional struc-
tures11. High-confidence phylogenetic trees for a complete GT1 
family were previously reported by some of us6, wherein a limited 
set of substrates was tested for common activity. Little correlation 
was found between primary sequence alignment and enzymatic 
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function over a 39-enzyme/three-coumarin substrate panel probing 
gains, losses, and regiochemical switching of activity even among 
closely related subfamilies. A screen of Medicago truncatula GT1s 
over 23 benzopyran(one) substrates similarly showed only sporadi-
cally clustered activity throughout the eight-enzyme dataset7. We 
therefore reasoned that any successful approach (Fig. 1) would, in 
essence, require a sufficient threshold of unique activity patterns of 
individual isoforms to be directly coupled with iterative (‘learning’) 
algorithms. This functional–informatic method, in turn, would 
require a sufficiently diverse array of chemical-substrate-recogni-
tion motifs to avoid bias, as well as a method permitting measure-
ment of many (semi-)quantitative activity ‘events’ unencumbered 
(‘label free’) by structural bias or perturbation (for example, by vir-
tue of installed chromo- or fluorophores6,7). The resulting dataset 
would subsequently be tested for utility in its ability to build and 
train classifier algorithms to correlate chemical and/or biological 
properties with the observed patterns for the protein library (here 
A. thaliana GT1 proteins).

We reasoned that a diverse, unbiased substrate usage coupled 
with broad a priori examination of properties would allow for the 
primary algorithmic focus to be intentionally generated by pro-
tein sequence (Fig. 2a). We used a decision tree (DT) learning 
approach, with a ‘deviance’ splitting criterion implemented through 
a cross-entropy function (the optimal-score function for classifica-
tion, which was the (negative) log of the multinomial probability 

distribution for correct/incorrect decisions into one or k catego-
ries). Such strategies can advantageously yield interpretable insight 
into the key parameters (that is, for the branching of the trees) for 
successful prediction, if any, thus essentially allowing researchers 
to learn how their putative models learn. Importantly, in such an 
approach, any lack of statistical power from insufficient breadth in 
substrate variation or poor choice testing (chemical or biological) 
would also be directly revealed by nonrobustness or poor perfor-
mance in the emergent algorithms.

We previously demonstrated a potentially general, label-free 
high-throughput MS (HT–MS)-based assay for (semi-)quantitative 
kinetic characterization of individual enzymes14–17. We considered 
that, in theory, combining the speed and broad, unbiased detec-
tion capabilities of this assay with proteins from an entire multigene 
family of GTs, could, for the first time, feasibly catalog a suffi-
ciently diverse chemical dataset from a complete family to allow 
for algorithmic correlation (Fig. 2b), thereby permitting mechanis-
tic and predictive insight to emerge regarding both substrates and 
sequences (Fig. 2c).

Screening of diverse substrates against an enzyme family. GT1 
group-transfer enzymes couple two substrates through the transfer 
to nucleophilic ‘acceptors’ (1–91) of electrophilic glycosyl ‘donor’ 
moieties (92–104) (Fig. 2). Electrophilicity is generated in the 
donor by the presence of a nucleotide diphosphate leaving group. 
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Three corresponding modes of substrate diversity, corresponding 
to three potential structural-selectivity elements were explored: (i) 
configurational and constitutional (that is, hydroxyl replacement) 
variation in the glycosyl moiety of the donor; (ii) nucleobase varia-
tion in the leaving-group moiety of the donor; and (iii) nucleophile 
heteroatom type (O, NH, or S) and the constitution of the scaffold 
(Fig. 2a). Such an approach is consistent with the few structures of 
GTs that reveal corresponding pockets and their primary engage-
ment with substrates via these three distinct moieties in Michaelis 
complexes18,19. In this way, we were able to create a broad substrate 
scope that could test the sufficiency of a predictive model for the 
GT1 enzyme superfamily (Supplementary Fig. 1).

Configurational and constitutional alterations of the donor-
substrate library (92–104; Fig. 2b, Fig. 3 and Supplementary Fig. 1)  
were designed to explore the logical variation of the glycosyl moi-
ety from a canonical d-glucose (Glc) starting point (Fig. 3a). For 
example, Glc→ d-mannose (Man), Glc→ d-galactose (Gal) permit-
ted exploration of the C-2 and C-4 configurations, respectively, 
and Glc→ N-acetyl-d-glucosamine (GlcNAc), Glc→ d-xylose, and 
Glc→ 5-S-Glc permitted exploration of altered functional groups 
(OH-2→ NHAc, CH2OH-5→ H, and O-5→ S) as well multiply com-
bined alterations, for example, Glc→ l-fucose and Glc→ l-rham-
nose (OH-6→ H combined with multisite configurational variation 
at C-2, 3, 4, and 5), which were intended to provide even greater 
structural diversity.

Second, the nucleobase moiety of the donor substrate was varied 
(for example, 92, 99, and 102) from the canonical pyrimidine U in UDP 
to explore both other pyrimidines (for example, T), Glc-UDP→ Glc-
dTDP purine (for example, G) usage Glc-UDP→ Glc-GDP (Fig. 3a).  
Consequently it was necessary to create unnatural-variant donor 
substrates designed to probe this nucleobase pocket in conjunction 
with natural variants (for example, Glc-GDP compared with Man-
GDP, respectively) and variants that are species specific (for exam-
ple, eukaryotic UDP compared with prokayrotic dTDP).

We designed the nucleophile-acceptor library (1–91) to probe 
the chemical space (molecular shape and solvent-excluded vol-
umes), electronics (logP ranges, polarity, and lone-pair count), and 
reactivity (nucleophile type) (Supplementary Fig. 1). Variations in 
molecular shape (for example, via hybridization alterations or unsat-
urations sp3→ sp2; acyclic versus fused/bridged polycyclic substrates) 
created a systematically altered yet diverse range of ‘sizes’. Substrate 
series to reveal electronic effects included acidic, basic, and neutral 
variations of the same molecular cores. Finally, various O-, NH-, 
and S-based nucleophiles were used to evaluate the heteroatom 
type. The accommodation of heteroatoms in active sites appears, in 
particular, to be connected with subtle mutations that are not read-
ily understood, and predictive understanding might enable creation 
of catalysts for the formation of new C-X bond types19. Diversity 
measures, based on the principal moments of inertia analysis of 
energy-minimized structures20, confirmed a broad range of rod-
like, disk-like, and spherical overall shapes (Supplementary Fig. 1c).

We conducted a sequential screen to collect datasets for enzyme 
activity, donor-utilization patterns, and acceptor recognition  
(Fig. 2b). First, we established the initial activity of the full family 
of 107 Arabidopsis GT1 enzymes, by using canonical, physiologi-
cally relevant6 plant UDP-d-glucose substrates (Glc-UDP, donor) 
with known endogenous plant acceptors 23 and 31 against a panel 
of GT1-gene-derived lysates expressed in parallel under identical 
conditions6 (Supplementary Fig. 2). This initial survey revealed 
activity for 54 of the 107 members at levels, and under conditions, 
that would permit functional screening.

Next, the systematically varied 13-member sugar-donor library 
was screened with the two optimal acceptors (23 and 31) that had 
shown full activity with Glc-UDP over the entire 54-enzyme panel. 
This procedure revealed ‘coarse-grained’ interaction patterns for the 
entire sugar/nucleoside library (Fig. 3a): the nucleoside component 

was more stringently regulated, with dTDP utilization (addition of a 
methyl group) at 25% and GDP (a purine) at only 7.4%. Alternative 
functional groups at C6, C4, and C2 could be used by 28–48% of the 
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GT1 library, including more bulky sugar 2-N-acetylglucosamine-
UDP (GlcNAc-UDP).

Third, the canonical donor sugar Glc-UDP was used in an initial 
acceptor screen. Unguided manual classification of the dataset on 
the basis of some overall structural features (for example, aliphatics, 
heterocycles, and small aromatic acids; Fig. 3b) and nucleophilic-
ity patterns (Fig. 3c) highlighted rough substrate functional group 
types with broad activity (for example, polyphenolic compounds) 
or lower activity (highly polar glycosides or amino acids). This pro-
cess critically revealed that up to half of these GT1s can use a range 
of nucleophiles, including more unusual functional groups such as 
acids, anilines, and thiophenols.

Clustered functional trends are distinct from phylogeny. This 
diverse activity dataset was used as the basis for training chemical–
bioinformatic classifiers to identify patterns useful for predictive 
modeling (Fig. 2c). The data were parsed according to threshold 
activity levels determined by the product-ion-count signal-to-
noise ratio. Comparison of these data with the global amino acid 
sequence alignment of each active enzyme revealed only extremely 
scattered patterns for the both donors and acceptors (Fig. 4a and 
Supplementary Figs. 3–5), in agreement with the poor correlations 
of observed activity patterns in prior genomic and phylogenetic 
analyses6,7,21. To assess the fitness of biochemical clustering meth-
ods for our dataset analysis, we recapitulated the GT1 familial phy-
logenetic arrangement6 for the aglycone acceptor library (Fig. 4a) 
and the sugar-donor library (Supplementary Fig. 3a). Confirming 
earlier reports, we observed major discrepancies between related 
sequences and activities for both the sugar donors and acceptors 
(Fig. 4a and Supplementary Fig. 3). Given the suggested structur-
ally related nature of sugar-donor binding in plant GT1s via the 
so-called plant secondary-product glycosyltransferase (PSPG) 
motif21, we expected ready clustering. The absence of clustering 
within our initial phylogenetic analyses strikingly highlighted 
the seemingly shallow influence of sugar type on the enzymatic 
evolution of at least this superfamily of GTs. Our results indicated 
that nucleotide diphosphate recognition, that is, for UDP, was 
conserved; while 25% of the GT1s surveyed here used the more 
structurally similar dTDP, only 7% used GDP sugars. These find-
ings suggest that, although the PSPG motif is useful for identify-
ing UDP-binding regions within GT1s, this motif may not account 
for the recognition events of the carbohydrate portions of sugar 
nucleotide diphosphates.

Similarly scattered activity patterns were observed for acceptors 
(full acceptor profile in Supplementary Figs. 3b and 4). However, 
some pockets of conserved function could be assigned, at least par-
tially, to phylogenetic groupings. First, polyphenolic flavonoids and 
coumarins were widely used throughout the GT1 panel. Small aro-
matic acids also made up a significant activity group, albeit scattered 
throughout the phylogenetic classes. For instance, approximately 
half (9/17) of the tested group E enzymes used acid-containing 
substrates, but those enzymes were split into two subgroups over 
the tree rather than localizing in one defined subgroup, thus sug-
gesting that overall amino acid conservation is not the major driver 
of substrate recognition. The group D and group L enzymes, the 
only two groups with subsets of enzymes that process polar hetero-
cyclic rings, were also divergent in overall sequence: the group D 
UGT73C6 (nomenclature in Methods) and the group L UGT84A2 
had 26.5% identity, 48.5% similarity, and substantial gaps (18.6% 
of the sequence), for example. Our results thus bolster the earlier 
hypotheses6 that parallel independent evolutionary events have led 
to both the frequent acquisition and the loss of substrate-recogni-
tion patterns, and that sequence alignment alone is therefore not 
predictive of functional activity.

Next, a wholly sequence-naïve, stepwise analysis allowed  
for activity-based clustering of GT1 isoforms and elucidation of 

common functional patterns from within the superfamily. First, 
threshold activities were used to assign activity commonality 
(full, partial, or no activity) between each enzyme and each sub-
strate molecule (Fig. 4b, Supplementary Table 1 and equation (1), 
Methods). Average linkage clustering (equation (2), Methods) was 
then implemented to hierarchically arrange the interaction pat-
terns for enzymes in a sequence-independent fashion (Fig. 4b, 
horizontal axis). Notably, such ‘activity clustering’, guided by the 
individual acceptor and donor substrates’ interaction patterns with 
GT1 proteins, permitted some manual classification of meaningful 
substrate–enzyme subtypes directly, whereas phylogenetic analysis 
wholly failed (Fig. 4b, horizontal axes). For each substrate library, 
clustering identified groups of GT1s with, for example, promis-
cuous donor-substrate scopes (Supplementary Fig. 3, right) that 
were unrelated to amino acid similarity or acceptor promiscuity  
(cf. Supplementary Fig. 5, right).

Excitingly, robust substrate clusters also emerged for acceptor 
nucleophiles (Fig. 4b) along with substrates with singular recogni-
tion patterns that suggested modes of GT1-isoform specialization 
toward for example, N-heterocycles, bulky fused aliphatic-ring 
systems, and polar glycosides. This ‘chemical clustering’, which 
emerged without the input of any physicochemical or structural 
information, importantly revealed the strong influence of substrate 
chemical properties as major drivers of substrate recognition in the 
GT1 superfamily.

Physicochemical analyses permit algorithmic prediction. To 
correlate and appropriately weight such physicochemical features 
rigorously, we developed an analytical process that would facilitate 
the discovery of overall quantitative structure–activity relationship 
(QSAR)-based classifiers for the GT1 family. DT-based22 algorithms 
were trained on systematically varied combinations of physico-
chemical properties (cLogP, molecular volume, and pKa) and 
structural parameters (functional-group copy numbers: hydroxyl 
groups, carboxylic acids, and amines; Supplementary Table 2). 
Emergent algorithms were evaluated with a leave-one-out cross-
validation approach to rank the various models’ predictive abili-
ties for each compound and GT1 enzyme (Fig. 5, Supplementary 
Figs. 6 and 7, and Methods). From these, DT4 used a combination 
of physicochemical inputs (logP, molecular area, solvent-excluded 
volume, and number/type of nucleophilic groups) and structural 
information (scaffold type, mono/bi-cyclic variation (five- or six-
membered, [4.3.0], [4.4.0] bicycles, and functional groups) that per-
mitted prediction of interactions with 90% ±  1.3% accuracy for our 
Arabidopsis GT1 dataset. Further statistical benchmarking with the 
Matthews correlation coefficient (MCC; Methods), which analyzes 
the quality of correlations between –1.0 and +  1.0 on the basis of the 
true-positive/negative versus false-positive/negative rates for binary 
predictions yielded an average value of 0.591 for the DT4 model 
over all 59 acceptor molecules with experimental and/or predicted 
activity in this dataset (Supplementary Table 3). This procedure 
confirmed a strongly positive agreement between predicted and 
experimental results in a system that we termed GT-Predict.

GT-Predict guides functional annotation in other species. Putative 
annotation of gene function remains a dominant form of predictive 
biological analysis23, yet many superfamilies, such as those contain-
ing GTs, remain essentially intractable to typical analyses24. The fail-
ure of global amino acid sequence alignment (described above) to 
cluster accurately and rationalize GT substrate–activity patterns, in 
striking contrast to the strong correlative success of our substrate 
physicochemical-feature analysis (described above), suggested that 
putative assignment would require alternative strategies.

The clear driving influence of substrate features that we observed 
suggested that a focused analysis of salient corresponding protein 
features would allow for suitable influence of substrate-interacting 
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regions in an unbiased manner. Local sequence alignment can be 
used to rank short highly similar regions while ignoring large gaps 
or regions of sequence divergence more effectively than in global 
sequence alignment25. This process, in principle would enable algo-
rithmic focus on more relevant (for example, substrate-interacting) 
protein regions. Thus, the use of the Smith–Waterman algorithm 
for local sequence alignment25 allowed us to interrogate novel 
sequences of GT1 enzymes outside of our dataset, by using our 
functionally characterized enzyme library. For efficient interroga-
tion, we developed a program to perform combined local alignment 
and BLOSUM50 scoring of the novel GT1 amino acid sequence 
against each of the GT1 sequences in our activity dataset. Merged 
use of the highest two ‘scores’ enabled predictive selection of the 
most likely set of substrates for the novel GT1 enzyme and hence 
putative functional assignment that could be tested experimentally.

In this way, GT-Predict was able to propose hypothetical activities 
for putative gene products individually selected from other species 
(Fig. 6). First, four individually selected GT1 gene sequences from 
the legume M. truncatula (mt; genes UGT71G1 and UGT78G1) and 
the cereal Avena strigosa (as; genes UGT74H5 and UGT88C4) were 
analyzed, and the activities of the encoded enzymes (mtUGT71G1 
and mtUGT78G1, and asUGT74H5, asUGT88C4, respectively; 
nomenclature described in Methods) were predicted and then  

compared with experimentally determined results26,27. The com-
parison (Fig. 6) revealed an 85–92% accuracy (Supplementary 
Table 4) for GT-Predict when tested against the subset of 44 sub-
strates that demonstrated robust activity in the Arabidopsis data-
set (Supplementary Fig. 13); the corresponding MCC values were 
between 0.518 and 0.910 (Supplementary Table 3), thus indicating 
very strong to excellent predictive correlation.

Next, we extended the GT-Predict workflow to test prediction 
against all of CAZy-confirmed gene members of the two complete 
families from A. strigosa and Lycium barbarum (Supplementary 
Figs. 8–11 and Supplementary Tables 5 and 6). These tests again 
were successful, with accuracy rates of 79.0 (MCC +  0.338) and 
78.8% (MCC +  0.319), respectively.

Finally, in addition to testing its utility against cognate-king-
dom species from different phyla, we tested GT-Predict against far 
more divergent sequences from two different phyla within a dif-
ferent kingdom: the actinobacteria Streptomyces antibioticus and 
Streptomyces lividans GT enzymes (saOleD and slMGT28, respec-
tively; Fig. 6). Strikingly, despite the sequence divergence and the 
change of kingdom (plant→ bacteria) from the A. thaliana GT1s 
in our dataset, GT-Predict was 69% accurate (with a positive MCC 
value of +  0.373) for saOleD and 74% (with a positive MCC value 
of +  0.414) for slMGT.

DT4

a

c

b

Family in (1, 2, 3)

No. OH < 0.5

COOH = 0

log P < –0.635

0

0

0

0 1

log P ≥ –0.635

COOH = 1

No. OH ≥ 0.5

Family in (4, 5, 6, 7, 8...) 100

95

90

85

80

75

70

65

DT1

Resveratrol

DT2 DT3 DT4 DT5

105

Predicted Predicted

UDP-Glc

71
C

4

73
B

1

73
C

5

73
C

6

78
D

2

84
A

2

71
C

4

73
B

1

73
C

5

73
C

6

78
D

2

84
A

2

UDP-Gal

UDP-GlcNAc

UDP-Glc 23
KaempferolUDP-Gal

UDP-GlcNAc

OH

HO

OH

O

OH

OOH

HO

OH

Fig. 5 | Gt-Predict development, validation, and utilization. a, Diagram of the optimal DT (DT4) used to classify information (additional information 
in Supplementary Note). b, Leave-one-out cross-validation of all DT models. Shown is the percentage accuracy of the trained model for each member 
of the sugar-acceptor library. Dashed lines indicate the full range of the validation-accuracy dataset. Single outliers (red crosses) were determined by 
ranking the predicted versus experimental results for each acceptor that showed activity with at least one GT1 enzyme; they were not included in the 
statistics of the box plot but are shown for completeness. The median percentage-accuracy values are shown in red lines for 59 acceptors tested in single 
measurements via high-throughput GAR-screening experiments (additional data in Supplementary Table 3). The interquartile ranges (25–75%) are shown 
in blue boxes. DT1–DT5 are DT-based models (additional information, including further validation with MCC analysis, in Supplementary Note). c, A subset 
of the GT-Predict results (in the bold box) for kaempferol (23) and application to prediction of enzymes for the new substrate resveratrol (105) alongside 
GAR activity for glycosylation of 105 with various NDP-sugar substrates. The results confirmed predictions and permitted use of atUGT73C6 for these 
transformations on a preparative scale (Supplementary Note). The variation in donor utilization by 23 and 105 highlights the essential discovery from DT4 
of the presence or absence of the acceptor hydroxyl functional group (circled) as a key parameter for successful activity prediction for alternative NDP-
donor substrates. All GAR-screening experiments were performed as single measurements.

NAtuRE ChEMiCAL BiOLOGY | VOL 14 | DECEMBER 2018 | 1109–1117 | www.nature.com/naturechemicalbiology1114

http://www.nature.com/naturechemicalbiology


ArticlesNaTure CHemiCal BioloGy

GT-Predict guides synthetically useful transformations. Next, 
we tested the predictive power of GT-Predict on a model com-
pound as a potential substrate. Resveratrol (105) is an antioxidant 
and pan–histone deacetylase inhibitor29 currently in clinical tri-
als for cancer prevention30 and neurodegenerative disease31. Its 
poor solubility as a free drug32 has prompted investigation into 
the production of resveratrol glycosides to improve its pharma-
cological properties33,34. Moreover, for the purposes of validating 
GT-Predict, resveratrol is endogenous only to berry-producing 
plant species but is not found in A. thaliana35.

Using GT-Predict, we identified several GT1s in the A. thaliana  
(at) GT superfamily predicted to hypothetically glycosylate resve-
ratrol as an acceptor nucleophile; usefully, these included GTs pre-
dicted to also be capable of using a selection of NDP sugar-donor 
electrophiles, thus allowing for good diversity of elaboration. 
When experimentally tested in vitro, the predicted biocatalyst 
atUGT73C6 proved most efficient from within the enzyme set, 
permitting regioselective and one-step synthesis of monoglyco-
sylated resveratrol on a preparative scale (Supplementary Fig. 12).  
Notably and importantly, these in vitro results confirmed ele-
gant results previously determined when the Arabidopsis GTs  
were used in whole-cell biocatalytic transformation to glucosylate 
105 (ref. 34).

In an essentially similar manner, asUGT88C4 was iden-
tified as a novel biocatalyst able to glycosylate novobiocin 
(Supplementary Fig. 13), a prenylated antibiotic36 biosynthesized by  
Streptomyces niveus, thereby demonstrating predictive activity  
discovery for not only nonendogenous substrates but also those 
outside of normal plant metabolism.

GT-Predict shows site features modulating selectivity. Structural 
guidance remains a crucial aspect for hypothesis-driven insight 
into biocatalyst mechanisms and enzyme engineering19. Whereas 
GT-Predict is founded on a comprehensive functional dataset, its 
use in conjunction with structural approaches also allowed for the 
identification of possibly important structural motifs and their 
roles within active sites. This identification was aided by a com-
bined visualization tool and graphical user interface that high-
lighted patterns on the basis of physicochemical property analyses 
(Supplementary Fig. 14). In this way, for example, the given accep-
tor substrates for a particular GT1 enzyme could be related to any 
two chosen chemical properties versus functional activity in three-
dimensional plots (Supplementary Fig. 14), to permit interrogation 
of emergent correlations.

These activity plots, in turn, enabled the discovery of intrigu-
ing observations and parameter determinants related to possible 
structural origins of the observed activities. For example, the activ-
ity plots of acid-containing acceptors revealed distinct dichotomous 
‘allowed versus forbidden’ utilization of anionic substrates by GT1 
isoforms. These findings in turn prompted structural investiga-
tion through GT-Predict-guided identification of relevant homolog 
sequences for which useful structural information is available in 
combination with homology-guided modeling (all models mapped 
closely onto known structures, with minor overall r.m.s. deviations 
of 0.73–1.25 Å (Supplementary Table 7 and Methods)).

Unique chemical patterns were investigated to explore three 
hypothetical ‘drivers’ of substrate recognition for several iso-
zymes. First, the breadth of the used substrate volume correlated 
with the GT1 active site size (Supplementary Fig. 14a,b), as judged 
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by mapping the accessible volume versus logP—a surrogate for 
molecular surfaces—in the crystallized (atUGT72B1) or mod-
eled (asUGT84A2) active sites. Second, selection of negatively 
charged substrates (at pH 8.0) involves either engagement by cat-
ionic active site–residue motifs and/or gating by anionic-residue 
motifs (Supplementary Fig. 14c,d). For example, in carboxylic 
acid–using GT1 atUGT84A2 (Supplementary Fig. 14d), this proce-
dure revealed a neutral active site cavity (Supplementary Fig. 14b). 
In contrast, in two GT1s not able to glycosylate acids, atUGT72C1 
and atUGT73C5, each displayed negatively charged ‘gates’ com-
posed of two acidic residues near the proposed substrate-access 
cleft: D180/E187 of atUGT72C1 (Supplementary Fig. 14c) and 
D92/E198 of atUGT73C5 (Supplementary Fig. 15). Third, the uti-
lization of sugar donors is modulated by the recognition of larger 
polar substituents through hydrogen-bonding to polar amino acids 
in accommodating pockets (Supplementary Fig. 14e). For example, 
the use by atUGT71C4 of more bulky polar UDP-GlcNAc donor 
substrate correlated with a unique arginine residue at position 292 
(Supplementary Fig. 14e), adjacent to the UDP-binding PSPG motif 
at a distance of 7.4 Å from the C2 substituent, a configuration nearly 
optimal for a hydrogen-bonding interaction with the N-acetyl group 
of GlcNAc.A hydrophobic residue or glycine occupied this position 
in the remaining group E GT1s studied. Notably, this arginine sub-
stitution was not found to be general to all other plant UDP-GlcNAc 
using GT1s, thus highlighting that directed algorithmic functional 
annotation can suggest rare but functional protein features, perhaps 
by identifying a unique evolutionary direction taken by an individ-
ual isoform within the GT1 family. Other structurally characterized 
UDP-GlcNAc-using enzymes also appear to exploit arginine resi-
dues to mediate selectivity37,38.

The residues pinpointed by GT-Predict in these ‘gating’ interac-
tions, namely sites D180 and E187 in atUGT72C1, and R292 in 
atUGT71C4, were experimentally probed through site-directed 
mutagenesis (Supplementary Fig. 15). Notably, in agreement with 
drivers implicated by GT-Predict, the mutation of aspartate/glu-
tamate→ alanine in atUGT72C1 D180A/E187A enabled activ-
ity toward acids (not present in the wild type), and mutation of 
arginine→ alanine in atUGT71C4 R292A removed the ability to 
transfer GlcNAc (but not Glc). These results not only confirmed 
the importance of these residues in controlling activity but also 
directly highlighted the potential of GT-Predict for use in rational 
enzyme engineering.

Discussion
Comprehensive predictive modeling of enzyme superfamilies has 
remained an unsolved challenge despite advances in genomics, pro-
teomics, and metabolomic data-gathering and analysis39. Certain 
predictive attempts have found some success, such as a database 
of in silico docking data compiled for more than 100 hydrolase 
enzyme structures40 and the development of a structure-guided 
metabolomics-prediction system to annotate new protein func-
tions41. However, these approaches to date have been confined to 
proteins of known structure and with relatively narrow substrate 
variation. Substrate utilization and chemical properties have been 
linked to generate QSAR-based predictive models for individual 
proteins from large protein families42,43 and have long been applied 
in inhibitor design44.

Here, a structurally and phylogenetically naïve functional 
approach succeeded in a testing proof-of-concept family (the 
GTs) by using libraries designed to probe chemical space across 
enough members of a species-wide collection of enzymes to 
obtain a training set. In this way, the combination of an exten-
sive functional dataset and a chemical–bioinformatic analytical 
method enabled accurate modeling of a full protein family and, 
indeed, prediction, testing, and validation of mechanistic hypoth-
eses and synthetic activities.

As an example of informatic encapsulation of a full protein 
family, several limitations to this approach should be recognized. 
First, regiochemical selectivity was not strongly considered in 
designing GT-Predict, which was based on the presence versus 
absence of chemical groups but not their three-dimensional ori-
entation. Some limitations can be noted when comparing seem-
ingly highly related substrates in which the relative position of an 
additional putative nucleophile may give rise to enhanced reactiv-
ity (for example, kaempferol (23) » resveratrol (105)). Additional 
strategies to exploit such regiochemical bias (‘substrate fit’) might 
further enhance accuracy6 (for example, Supplementary Fig. 4). 
Second, although our substrate library was found to be sufficiently 
broad for successful training, the predictive scope might also be 
further enhanced by adding database input, for example through 
DrugBank45 or metabolomic compound collections such as the 
Plant Metabolome Database46, if sufficiently well curated and tested. 
Third, GT-Predict now permits accurate prediction of GT1 activi-
ties correlated with local primary-sequence alignment, in a manner 
that was not previously possible, with the greatest accuracy for plant 
proteins. More advanced secondary-structure prediction/alignment 
methods might be anticipated to extend this method yet further (for 
example, for low sequence homology but high predicted structural 
similarity). Similarly, validation of the mechanistic hypotheses sug-
gested by GT-Predict through structural biology47 would clearly be 
of direct benefit in augmenting the promising mutagenic results 
obtained here. Because an excellent database for GTs (and other 
carbohydrate-processing enzymes) is available in CAZy4, even fur-
ther refinements and implementations based on this informatics 
environment might be anticipated.

Given the apparently related structural nature of sugar donors, 
it is surprising that direct phylogenetic clustering of their utility 
as substrates fails. Yet, our results, like those of other studies7,47,48 
clearly show that such analyses alone are not successful and are lim-
ited by, for example, sequence variability47. This finding strikingly 
highlights the shallow influence of sugar type on the enzymatic 
evolution of at least this superfamily of GTs and/or the guidance of 
selectivity by other parameters that are not defined by the ground 
state (for example, transition-state conformation49). Nonetheless, 
it is also clear that physicochemical parameters provide a strong 
guide that emerges through their striking hierarchical influence 
on clustering that we observed here, in agreement with the results 
of recent analyses of the evolution of function within certain con-
served folds50.

GT-Predict also allows for rational selection with some confi-
dence of scaffolds for desired transformations and thus might com-
plement some current de novo computational design algorithms, 
which have succeed at creating defined packing and active site cavi-
ties but may fail in terms of the finer points of active site residue 
identity and position13. For example, augmentation of computa-
tional and forced-evolution-based protein-design methods might 
also use starting points for a desired function identified from within 
a large protein superfamily.

Finally, the strategy presented here of algorithmically cou-
pling chemical-interaction patterns with local sequence analysis  
might be readily extended to other protein superfamilies that 
remain currently intractable to predictive functional annotation 
and engineering.
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Methods
General considerations. Unless otherwise noted, chemical reagents, media, and 
bacterial cell stocks were obtained from commercial suppliers (Sigma-Aldrich, 
Fluorochem, Carbosynth, VWR, Alfa Aesar, or Fisher Scientific) and were used 
without further purification. Sonication was performed with a Fisher Scientific 
Model 505 Sonic Dismembrator. Proteins were purified with an Äkta FPLC System 
UPC-900 (GE Healthcare). HT–MS was performed with either a Waters Quattro 
Micro API (ESI– mode) or a Waters ZMD-MS (ESI– mode) detector, each equipped 
with a Waters 600 HPLC System and a Waters 2700 autosampler capable of 96-well 
sampling format. Gel electrophoresis was performed with Invitrogen NuPAGE 
4–12% Bis-Tris gels, Novex MiniCell tanks, and a Bio-Rad PowerPac controller. 
Western blotting was performed with an iBlot gel-transfer device from Thermo 
Fisher. Thin-layer chromatography was performed with Silica Gel 60 F254 plates 
(Merck) with 1–10% methanol in dichloromethane. Proton NMR spectra were 
recorded on a Bruker AVIII HD 400 nanobay (400-MHz) spectrometer. Carbon 
NMR spectra were recorded on a Bruker DQX 400 (100-MHz) spectrometer. All 
1H NMR chemical shifts are shown in p.p.m. with residual solvent as the internal 
standard relative to TMS (d6-acetone, 2.09 p.p.m.). All 13C NMR chemical shifts 
are shown in p.p.m. with the central solvent peak as the internal standard relative 
to TMS (d6-DMSO, 39.3 p.p.m.). Coupling constants (J) are reported in Hertz. 
Infrared (IR) spectra were recorded on a Bruker Tensor 27 Fourier-transform 
spectrophotometer. High-resolution mass spectra were recorded on a Micromass 
LCT (resolution =  5,000 RWHM) with a lock-spray source. Protein crystal 
structures were analyzed and displayed with MacPyMOL v. 1.3 (Schrödinger). 
Synthetic genes for M. truncatula UGT71G1 and UGT78G1 were obtained from 
GeneArt Gene Synthesis (Thermo Fisher) with Escherichia coli codon-optimized 
amino acid sequences, as reported by Wang et al26,27. and cloned into the pGEX2 T 
vector (Amersham Pharmacia Biotech) with T4 DNA ligase (New England 
BioLabs). Mutagenesis was performed with a Q5 Site-Directed Mutagenesis Kit 
(New England BioLabs). Nucleotide sequencing was confirmed by the Source 
Bioscience DNA Sanger sequencing services of Oxford University (UK).

UGT enzymes are named according to the UGT Nomenclature Committee’s 
most recent guidelines52 as follows: A. thaliana protein UGT73C6 encoded by gene 
UGT73C6 is written atUGT73C6.

Plant GT1 production. Arabidopsis GT1 plasmids in pGEX-2T (as reported by 
Lim et al6.) were transformed into Rosetta (DE3) pLysS E. coli expression strains 
and produced essentially as previously reported6,53. Cells were resuspended in 
glutathione S-transferase (GST) purification buffer (50 mM Tris, pH 7.4, and 1 mM 
DTT), lysed, and centrifuged (at 10,000g for 10 min at 4 °C, then at 25,000g for 
60 min at 4 °C) and either used as the crude supernatant or purified with a Sepharose 
4B–glutathione resin (GE Healthcare) as previously described53. Western blotting 
was performed with mouse anti-GST (Supplementary Fig. 2a). Catalog numbers 
for antibodies: anti–glutathione S-transferase mouse IgG1 (BD Biosciences, clone 
G172-1138, catalog number 554805, lot number 4163768, dilution 1:1000); rabbit 
anti–mouse IgG–alkaline phosphatase fusion (Sigma Aldrich, polyclonal, catalog 
number A3562, lot number SLBK3154V, dilution 1:20,000); and mouse monoclonal 
anti–polyhistidine IgG–alkaline phosphatase fusion (Sigma, clone HIS-1, catalog 
number A5588, lot number 085M4836V, dilution 1:5000). All antibodies used were 
commercially available with respective documentation. We found that the GT1-
protein-containing lysates could be flash-frozen and thawed once, with activity 
remaining for up to 6 months of storage at − 80 °C.

Green–amber–red HT–MS screening. Activity assays were conducted with 
previously reported MS methods14 on either a Waters Quattro Micro API (ESI– 
mode) or a Waters ZMD-MS (ESI– mode) instrument, each equipped with a Waters 
600 HPLC System and a Waters 2700 autosampler capable of 96-well format. 
Reaction mixtures were composed of 93 μ L reaction buffer (1 mM Tris, pH 7.8, and 
50 μ M MgCl2), 1 μ L NDP sugar (10 mg/mL stock), 1 μ L aglycone (10 mg/mL stock), 
and 5 μ L cell supernatant or purified protein (~1 mg/mL). Glycosylation reactions 
were incubated at 37 °C overnight and monitored by MS full scans (150–1,100 Da). 
A direct infusion of 10 μ L of each reaction mixture was injected into the MS with 
50:50 MeCN/H2O (0.1 mL/min flow rate, 5.5 min flush). Data were ranked green 
(signal/noise > 10), amber (signal/noise 1–10), or red (signal/noise < 1) from the 
total-ion-count integration of the full peak (representative data in Supplementary 
Fig. 2b,c). The acceptor library is shown in Supplementary Fig. 1, and the full 
acceptor dataset is shown in Supplementary Fig. 3b. The full donor dataset is shown 
in Supplementary Fig. 3a. Regioselectivities were based on comparison of LC–MS 
elution time with internal standards, as previously reported8 or as deduced from 
substitution patterns within the same chemical families (Supplementary Fig. 4).

Chemical-diversity calculations. Molecular-shape calculations were used to 
design library features sampling a broad range of three-dimensional chemical space 
(Supplementary Fig. 1c). Each structure was energy minimized with the MM2 
function of Chem3D (CambridgeSoft) and converted to.sdf format. The principal 
moment of inertia was calculated for the energy-minimized conformations of our 
library members with the Knime Analytics Platform54 with the ‘SDF Reader’→ 
’PMI Calculation’ (Vernalis)→ ’JavaScript Scatter Plot’ nodes and compared against 
reference molecules for ‘rod’ (octa-2,4,6-triyne), ‘sphere’ (adamantane), and ‘disk’ 

(benzene)55. Our compounds were found to lie primarily along the rod–disk axis, 
but they sampled space well into the other principal chemical-shape regions.

Clustering of activity according to phylogenetic alignment or functional 
patterning. Phylogenetic analyses were performed with CLUSTAL_X56 or Clustal 
Omega57 and fully matched reported analysis for the Arabidopsis UGT family21. 
Pairwise alignment was performed with the EMBOSS Water program58. Functional 
activity analysis used hierarchical clustering to score and regroup the acceptors and 
donors according to GT1 interaction patterns (green, score of 1.0; amber, score of 
0.5; red, score of 0.0). Clustering proceeded via average linkage analysis59 (further 
details in the Supplementary Note).

Hierarchical clustering of activity. Functional activity analysis used hierarchical 
clustering to score and regroup the acceptors and donors on the basis of UGT 
interaction patterns (green, score of 1.0; amber/‘unclear’, score of 0.5; red, score of 
0.0). With our interaction data for each donor or acceptor molecule and the full 
collection of enzymes, each pair of enzymes i and j was assigned a distance score 
based on equation (1) with parameters from Supplementary Table 1.
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Hierarchical arrangement proceeded via average linkage-analysis clustering 
according to equation (2) in MATLAB. This process provided distance trees 
for each enzyme as well as each substrate, which were used to construct the 
arrangements used in Supplementary Fig. 5.

GT-Predict. Classifying substrate interactions with quantifiable physicochemical 
properties. A DT-based model was trained on various combinations of each 
substrate’s cLogP, molecular volume, solvent accessible area, and carboxylate pKa. 
Additionally, structural information such as the number of hydroxyl groups or 
amines as well as substitution patterns on coumarin, flavonoid, or phenylpropenoid 
scaffolds (physicochemical parameters, calculated with Chem 3D version 16.0, are 
listed in Supplementary Tables 8 and 9). GAR scores were input for each enzyme, 
and classifier programs were written in MATLAB as part of the GT-Predict 
‘PredictAcceptorInteraction’ module. The cross-entropy function was used for 
the splitting criterion for the branching of the tree. Models were evaluated by 
determining the accuracy and MCC with leave-one-out cross validation60,61.

Prediction of novel enzyme activities on the basis of the GAR dataset and 
alignment. A Smith–Waterman25/BLOSUM50 (ref. 62.) pairwise-alignment 
algorithm was implemented with the GAR scoring matrix in the GT-Predict 
‘PredictEnzymeInteraction’ module. A weighted k-nearest-neighbor approach was 
used to predict substrate interactions for novel GT1 FASTA amino acid sequences 
with equation (3) to obtain weighted votes from the closest protein sequences in 
our dataset and to provide interaction predictions for novel sequences. The top two 
sequences in our dataset for a novel GT1 amino acid sequence input were used in a 
weighted vote for prediction, with a 1/’yes’ for weighted votes (pm) >  0.5 or a 0/’no’ 
for pm <  0.5 (equation (4)).
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In equation (3), xmj represents the interaction data for molecule m interacting 
with the jth nearest neighbor of the enzyme, and is equal to 1 if there is an 
interaction or 0 if there is not. The results of the prediction were tested against the 
interaction patterns of experimental GAR screens.

We applied the GT-Predict ‘PredictEnzymeInteraction’ module to two novel 
GT1 enzymes from the legume M. truncatula and the cereal grain A. strigosa. 
Data for two ‘divergent’ GT1 sequences from bacterial GT1 enzymes were adapted 
from our previous screen28. Prediction and experimental validation data are 
shown in Supplementary Fig. 13, and accuracies are tabulated in Supplementary 
Table 3. Parameters and data from the bacterial enzymes saOleD and slMGT were 
essentially those from previous studies28. Details and validation can be found in the 
Supplementary Note. Protein accession codes used for prediction were as follows: 
M. truncatula mtUGT71G1, UniProt Q5IFH7; M. truncatula mtUGT78G1, 
UniProt A6XNC6; A. strigosa asUGT74H5, GenBank EU496509; A. strigosa 
asUGT88C4, GenBank EU496511; S. antibioticus OleD, UniProt Q53685; and S. 
lividans MGT, UniProt Q54387). All alternative GTs were expressed via our Plant 
GT1 production workflow.
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Exploration of other complete families. Two separate and complete GT1 families from 
A. strigosa and L. barbarum, respectively, containing candidates given as ‘confirmed’ 
in the CAZy ‘glycosyltransferases’ database4 were selected for further benchmarking 
with the ‘PredictEnzymeInteraction’ module. Each contained ~20–25 validated 
isozymes. Amino acid sequences were collected from UniProt, DNA-sequence-
optimized for production in E. coli, and ordered as synthetic gene fragments (Twist 
Bioscience). GT1 sequences were flanked with restriction sites (N-terminal BamHI 
and C-terminal EcoRI) for cloning into pGEX-2t) and a C-terminal hexahistidine 
tag for western blotting and optional purification, although these were used as crude 
lysates for screening purposes. Fragments are listed in Supplementary Table 5 (Avena) 
and Supplementary Table 6 (Lycium). The synthetic gene adaptors 5′ -GGATCC–GT1 
gene fragment–GCAGCAGCACTGGAACATCATCATCATCATCAT–TAA–
GAATTC-3′  (BamHI site–GT1 sequence–linker/hexahistidine tag–stop codon–
EcoRI site) were used for all sequences.

GT1 fragments were dissolved in Tris-EDTA buffer, digested with EcoRI and 
BamHI (New England BioLabs) according to the recommended protocols, and 
purified with Qiagen PCR Purification Spin columns. The vector pGEX-2t was 
digested with EcoRI and BamHI, purified on agarose gel, and isolated with Qiagen 
Gel Purification Spin columns. Ligation was performed with T4 DNA ligase (New 
England BioLabs) according to the standard overnight 16 °C protocol. All sequences 
were verified. Of note, a minor number of GT1 gene fragments failed during DNA 
production or cloning, but 16/18 Avena and 16/23 Lycium GT1 expression plasmids 
were verified. The expansion plant GT1s were produced in Rosetta 2 (DE3) pLysS 
E. coli strains according to our standard procedure (briefly, 250 mL terrific broth 
cultures were grown at 37 °C to OD600 ≈  0.6, cooled to 20 °C, and induced for 
overnight expression with 0.1 mM IPTG and shaking at 140 r.p.m.). Cell pellets were 
isolated, sonicated, and centrifuged at 12,000g for 15 min at 4 °C and then 25,000g 
for 60–90 min at 4 °C. Gels and western blots (with anti-polyhistidine–alkaline 
phosphatase clone HIS-1, Sigma, A5588) are shown in Supplementary Fig. 8.

GT-Prediction of enzyme interactions and confirmatory screening reactions 
were performed as above. Aglycones were chosen as the ~40 substrates that showed 
positive reactivity with at least one GT1 in the Arabidopsis collection. The predicted/
experimental datasets and summary are shown in Supplementary Figs. 9–11.

Homology-model construction for confirmation of chemical-recognition 
hypotheses. Structurally characterized Michaelis complexes of GT1 enzymes 
(either UGT72B1, PDB 2VCE19, or VvGT1, PDB 2C1Z18) were input as templates 
for homology-model construction with the I-TASSER server48,51. Models were 
aligned to the corresponding structure in COOT63. Structural images were created 
in PyMOL (Schrödinger, v 1.3). Model validations (r.m.s. deviation) are listed in 
Supplementary Table 7 and fell between 0.73 and 1.25 Å. The physicochemical 
properties of the acceptor libraries were visualized in the GT-Predict ‘AcceptorGUI’ 
module, which highlights associations for each enzyme by property.

Site-directed mutagenesis of UGT71C4 and UGT72C1. Enzyme engineering of 
the anionic substrate and UDP-GlcNAc activity assays were carried out with the  
Q5 Site Directed Mutagenesis kit (New England BioLabs) with the following 
primers. UGT71C4 R292A: forward, 5′ -TTTCGGGAGCgcAGGAAGCGTTG-3′ ;  
reverse, 5′ -CAGAGGAACACCACCGAT-3′ . UGT72C1 D180A: forward,  
5′ -CGGGCTCAAGcTCCGAGAAAATATAT-3′ ; reverse,  
5′ -CTCAAACTTAACCGGGCTG-3′ . UGT72C1 E187A: forward,  
5′ -TATATTCGGGcACTCGCTGAG-3′ ; reverse,  
5′ -TTTTCTCGGATCTTGAGC-3′ . UGT72C1 D180A E187A: forward,  
5′ -tatattcgggcACTCGCTGAGTCTCAGCG3′ ; reverse,  
5′ -ttttctcggagCTTGAGCCCGCTCAAACTTAAC-3′ . UGT72C1 G284R:  
forward, 5′ -TTTTGGGAGTagaGGGGCACTAAC-3′ ; reverse,  
5′ -GAAACATAAACCACTGACTC-3′ .

Mutagenesis reactions were processed according to the manufacturer’s 
protocol. All transformants were confirmed by nucleotide sequencing.

Biotransformation to prepare trans-resveratrol-4′-O-β-d-glucopyranoside. 
Reactions were carried out in aqueous buffer (20 mM Tris, pH 8.0, 40 mM NaCl,  
4 mM KCl, and 2 mM MgCl2). A 50-mL Falcon tube was charged with 5.7 mg (25 μ mol,  
1 equiv.) resveratrol and 15.7 mg (25 μ mol, 1 equiv.) UDP-glucose disodium salt. 
Then 50 mL of cold buffer (to 500 μ M final concentration), followed by 500 μ L of 
rapidly thawed GST-UGT73C6 crude lysate, was added, and the samples were stored 
on ice. The reactions were placed in a 37 °C shaking incubator at 200 r.p.m., then 
subjected to TLC. (An upright 50-mL Falcon tube is optimal. Too much headspace/
shaking precipitates the GT1 catalyst.) Reactions were worked up by extraction five 
times with 10 mL EtOAc. The organic layer was washed with 50 mL brine, dried over 
MgSO4, and purified by silica chromatography (2.5 g silica gel, 0% MeOH/CH2Cl2 
to 15% MeOH/CH2Cl2) to afford 3.0–3.8 mg product as a pale beige solid (average 
34% ±  4% yield over three attempts, n =  3) of m.p. 215–223 °C (lit, 210–215 °C).  
TLC Rf =  0.22 in 15% MeOH/CH2Cl2. 1H NMR (d6-acetone, 400 MHz) δ =  8.27  
(s, 1 H, phenolic OH), 7.55 (d, J =  8.8 Hz, 2 H, H2′ , H6′ ), 7.10− 7.02 (m, 3 H, vinylic 
H, H3′ , H5′ ), 6.98 (d, J =  16 Hz, 1 H, vinylic H), 6.59 (d, J =  2.0 Hz, 2 H, H2, H6), 
6.32 (s, 1 H, H4), 5.01 (d, J =  7.2 Hz, 1 H, H1′ ′ ), 4.64 (s, 1 H, sugar OH), 4.38 (s, 1 H, 
sugar OH), 4.32 (s, 1 H, sugar OH), 3.93 (dd, J =  2.8 and 14 Hz, 1 H, H6′ ′ A), 3.75 

(dd, J =  2.4 and 13 Hz, 1 H, H6′ ′  B), 3.48 (m, 4 H, H2′ ′ , H3′ ′ , H4′ ′ , H5′ ′ ). Common 
solvent impurities at δ =  2.88 (H2O), 2.45 (ethyl methyl ketone), 2.09 (acetone), 
1.97 (ethyl acetate), 1.32 and 0.914 (‘grease’), and 0.17 (silicone grease) were found, 
owing to low sample concentration after repeated attempts by HPLC to remove. 
13C-NMR (d6-DMSO, 100 MHz) δ =  159.0 (C3, C5), 157.4 (C4′ ), 139.4 (C-1), 136.8 
(C1′ ), 128.0 (vinylic C), 127.8 (C2′ ), 127.6 (vinylic C), 116.9 (C3′ ), 104.9 (C2), 102.5 
(C4), 100.8 (C1′ ′ ), 77.5 (C2′ ′ ), 73.7 (C5′ ′ ), 70.2 (C4′ ′ ), 61.2 (C6′ ′ ). MS (ESI): m/z: 
calc for C20H21O8 [M-H+]: 389.12419; found: 389.12442. IR (neat) ṽ =  3,361, 2,980, 
2,402, 1,601 cm−1. The obtained spectroscopic data (Supplementary Fig. 16) were in 
accordance with those reported in the literature33,64.

Statistical analyses. Validation of all the predictive models in the paper considered 
all elements of the confusion matrix, namely the number of positives and 
negatives predicted that correctly matched the true categories (true positives and 
true negatives, respectively) as well as positive and negative predictions that are 
incorrect (false positives and false negatives, respectively). The median percentage 
accuracy (the accuracy associated with the fiftieth percentile of the accuracies over 
all data) and the MCC (equation (5)) for each acceptor are plotted in the box-and-
whisker plots in Fig. 5; all data reported in Supplementary Table 3 (DT4 model) 
and in the GT-Predict package are available online.

= × − ×
+ + + +

TP TN FP FN
TP FP TP FN TN FP TN FN

MCC ( ) ( )
( ) ( ) ( ) ( )

(5)

Data and predictive analysis for new enzyme families for A. strigosa and  
L. barbarum GT1s can be found in Supplementary Figs. 13 and 14. All the GAR 
high-throughput-screening measurements were used as single data points.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. Custom code for GT-Predict has been packaged into an executable 
file compatible with Windows (tested in XP, Windows 7, and Windows 10),  
which is available through the Oxford University Research Archive at https://doi.
org/10.5287/bodleian:zg5195kaE. Installation and use of GT-Predict on Microsoft 
Windows 10 are shown in Supplementary Video 1.

Data availability
Activity datasets, mass spectrograms, and the protein FASTA sequences used 
herein are included in a package available through the Oxford University Research 
Archive at https://doi.org/10.5287/bodleian:zg5195kaE.
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    Experimental design
1.   Sample size

Describe how sample size was determined. No statistical methods were used to predetermine the sample size- we included 
the entire group of  known GT1 enzymes from Arabidopsis thaliana. For revision 
experiments, all confirmed/validated GT1s from Avena strigosa and Lycium 
barbarum from the Carbohydrate Active EnZyme (CAZy) bioinformatic database 
were used. We reasoned that using ALL possible enzymes in this family would 
provide an unbiased window into their activity for rationalizing and predicting 
activities.

2.   Data exclusions

Describe any data exclusions. No data was excluded.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

All data were checked and reliably reproduced.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

All known A. thaliana glycosyltransferase family 1 enzymes were utilized. All 
confirmed A. strigosa and L. barbarum GT1s were used. No randomization of these 
samples were necessary, as we used the complete Arabidopsis dataset to train our 
models using leave-one-out cross validation (i.e. the entire dataset).

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was not necessary in this study. The data were collected and used as the 
entire grouping and were not separated for analysis. No animal/human 
participants were used; only enzyme assays.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

ClustalX and ClustalOmega were used for sequence alignment. 
A custom executable program was developed for function prediction: GT-Predict 
(this is shared along with datasets at the link provided in the Data Availability 
Statement). 
COOT (version 0.8) was used to align enzyme structural coordinates and homology 
models. 
MacPyMOL (version 2.0.6) was used to display structures in all Figures. 
Knime (version 3.3.2, with the Vernalis plugin) was used for the cheminformatic 
calculation of principal moments of inertia for the acceptor dataset. 
The I-TASSER server was used for homology model construction.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Chemicals were purchased from commercial resources. DNA sequences were 
originally from one author's laboratory which is now available to purchase by DNA 
sequence. Plasmids may be requested from Benjamin G. Davis for academic use.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

Anti Glutathione S-Transferase Mouse IgG1 (BD Biosciences, clone G172-1138, 
catalog number 554805, lot number 4163768, dilution 1:1000) 
Rabbit Anti-Mouse IgG-alkaline phosphatase fusion (Sigma-Aldrich, polyclonal, 
catalog number A3562, lot number SLBK3154V, dilution 1:20,000) 
Mouse monoclonal anti-polyhistidine IgG--alkaline phosphatase fusion (Sigma, 
clone HIS-1, catalog number A5588, lot number 085M4836V, dilution 1:5000) 
All antibodies used were commercially available with respective documentation.
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used in this study.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

No human participants were included in this study.
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