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Dehydroalanine has emerged in recent years as a non-

proteinogenic residue with strong chemical utility in proteins for

the study of biology. In this review we cover the several

methods now available for its flexible and site-selective

incorporation via a variety of complementary chemical and

biological techniques and examine its reactivity, allowing both

creation of modified protein side-chains through a variety of

bond-forming methods (C–S, C–N, C–Se, C–C) and as an

activity-based probe in its own right. We illustrate its utility with

selected examples of biological and technological discovery

and application.

Address

Department of Chemistry, University of Oxford, Chemistry Research

Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom

Corresponding author: Davis, Benjamin G (Ben.Davis@chem.ox.ac.uk)

Current Opinion in Chemical Biology 2018, 46:71–81

This review comes from a themed issue on Synthetic biomolecules

Edited by Richard J. Payne and Nicolas Winssinger

https://doi.org/10.1016/j.cbpa.2018.05.022

1367-5931/ã 2018 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

Background and motivation
Modern chemical biology relies increasingly  on protein

chemistry, which (ideally) allows precise positioning of

labels, cargoes and post-translational modifications

(PTMs) in the contexts of complex protein structures

[1–3]. The resulting modified proteins prove useful in

therapeutic applications, the probing and modulating of

function, as well as their tracking and (un)caging in

cells [4–6].

Various methods have been developed for the convergent

construction of site-selectively modified proteins [6,7].

Traditionally, the non-site-selective chemical modifica-

tion of proteins has relied on the nucleophilicity of the

side-chains of natural amino acid residues lysine (Lys)

and cysteine (Cys), as well as protein N-terminus through

direct acylation, alkylation and arylation with a wide array

of electrophiles [6–8]. However, while these techniques

have been extensively used, for instance, for antibody–

drug conjugate (ADC) manufacturing, their lack of
www.sciencedirect.com 
selectivity is a major limitation in applications requiring

greater homogeneity and precision. While some site-

selectivity can be achieved using the natural rarity of

Cys (�1% of Cys on average in proteins [9]), a ‘tag-and-

modify’ [10] approach can be generally used as a site-

selective protein labelling method that exploits position-

ing of pre-determined functional groups, ‘tags’

(Figure 1a). It relies on the selective introduction of a

‘tag’ as a reactive handle to each site of interest followed

by chemoselective reaction to ‘modify’/graft on to that

site the function of interest. In the past decades, the range

of non-proteinogenic, reactive tags (e.g. azide, alkyne,

tetrazine) has been greatly expanded by biochemical and

cellular methods (auxotrophic replacement, nonsense

codon suppression [11–13]). Many such bioconjugation

methods now enable effective site-selective labelling.

However, for the attachment linkage leaves a ligation

‘scar’ in the protein, often larger than the amino residue

itself, precluding precise or subtle functional study or

biomimicry [14,7].

The amino acid dehydroalanine (Dha), as a biocompati-

ble ‘tag’ in proteins, shows intriguing and varied reactivity

with typically minimal (e.g. single b,g-C–X bonds)

attachment marks/’scars’ that therefore allows striking

flexibility in, for example, the installation of natural

PTMs (or mimics) and chemical mutagenesis to a broad

variety of natural and unnatural amino acids. The inser-

tion of Dha tag into proteins proceeds under mild con-

ditions via various complementary methods and can now

be robustly scaled up to milligram protein quantities. In

this review, we aim to provide an overview of approaches

to modify proteins via dehydroalanine. We describe

methods of Dha incorporation into a wide range of pro-

teins and illustrate that Dha functionalization is driven by

its chemical properties. Finally, we discuss applications of

Dha chemistry as a broadly applicable tool by highlight-

ing recent achievements ranging from creating modified

nucleosomes to preparing better therapeutics.

Introduction of dehydroalanine to proteins
Dehydroalanine is a naturally occurring amino acid, which

is formed by serine (Ser) dehydration or phosphoserine

(pSer) elimination in peptides [15] and proteins [16]. Its

formation is observed during lanthipeptide natural prod-

uct biosynthesis in prokaryotes [17]. Excretion of phos-

phothreonine lyases (OspF, SpvC and HopAI1) in path-

ogenic bacteria (Shigella, Salmonella and Pseudomonas
syringae, respectively) converts pSer to Dha in activation

loops of host mitogen-activated protein kinases (MAPK)
Current Opinion in Chemical Biology 2018, 46:71–81

mailto:Ben.Davis@chem.ox.ac.uk
https://doi.org/10.1016/j.cbpa.2018.05.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cbpa.2018.05.022&domain=pdf
http://www.sciencedirect.com/science/journal/13675931


72 Synthetic biomolecules
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(a) Site-selective covalent protein modification by a two-step ‘tag-and-modify’ approach. (b) Methods to introduce dehydroalanine (Dha) as a ‘tag’

to proteins. The position of interest is typically activated by conversion to a Dha precursor followed by its elimination to Dha. Protein taken from

PDB: 1N2E [89].
[16]. Finally, Dha is formed by spontaneous non-enzy-

matic elimination of pSer as a consequence of protein

aging in human cells [18,19], a process which in some

proteins may be accelerated chemically [20].

Ser and other natural amino acids Cys and selenocysteine

(SeCys or Sec) can be used as controllable Dha precursors

by protein chemists. These residues, inserted at the
Current Opinion in Chemical Biology 2018, 46:71–81 
position of interest, are first transformed into leaving

groups, which upon elimination, yield Dha (Figure 1b).

Historically, the first attempts to form Dha on peptides and

proteins relied on Ser sulfonylation followed by elimination

underconditions typically tooharsh formost proteins and in

a manner that is applicable only to activated (e.g. catalytic

triad) Ser [21]. Following phosphorylation, in vitro treat-

ment of the resulting pSer with barium hydroxide at
www.sciencedirect.com
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ambient temperature can yield Dha [20]. However, despite

progress in amber codon suppression technology and semi-

synthetic methods, fully selective incorporation of pSer

into larger proteins [22–26] remains a challenge and may

not always provide a flexible precursor.

Therefore, methods to transform more rare (allowing gen-

erality) and more reactive (allowing milder conditions)

amino acid Cys to Dha were developed to achieve com-

patibility with sensitive protein structures as well as selec-

tivity [27�,28�]. Contrary to pSer, SeCys and its derivatives

(see below), Cys may be introduced to a target protein quite

simply by site-directed mutagenesis. Although early pio-

neering work on Dha formation from Cys was complicated

by associated protein cleavage [29], in 2008 an oxidative

amidation/Cope-type elimination protocol using O-mesi-

tylenesulfonylhydroxylamine (MSH, 1) was reported on

model protein subtilisin [27�]. Whilst applicable to many

proteins without side-reaction, low level undesired reac-

tivity of MSH as an oxidative reagent with nucleophilic

amino acids (Met, Lys, His, Asp and Glu) under certain

conditions was observed [28�]. This led to development of a

series of milder and more selective reagents (Figure 2b, 2–
4) that convert Cys to Dha via bis-alkylation/elimination,

inspired [28�] by the inferred formation of Dha in murine

and human metabolic products upon treatment with 1,4-

dihalobutanes or the drug BusulfanTM (the bis-mesylate of

1,4-butanediol) [30]. Thus, even commercial 1,4-diiodo-

butane (2) can be used, although its broad application in

protein chemistry is precluded, in part, by a very low

solubility in water. The reagent that was therefore found

to have broadest utility, 2,5-dibromohexanediamide

(DBHDA, 3) is more water-soluble, stable, simple-to-pre-

pare, easy-to-handle and is now commercially available

(Kerafast: URL: http://kerafast.com/product/1877; and

Sigma–Aldrich: Cat. No. 900607). More recently, methyl

2,5-dibromopentanoate (MDBP, 4) — originally used in

the creation of multiple Dha in peptides [31]) — has been

found to be the reagent of choice for sensitive proteins

[32,33] by allowing an apparently rate-limiting second

alkylation step.

Site-selective Dha formation in proteins containing mul-

tiple Cys poses a significant challenge. In early studies,

selectivity has been driven by Cys residue accessibility

[34,35] or reactivity [36]. Nevertheless, a general method

for addressing this challenge is still missing. One strategy

is further elaboration of the core structure of 3 in order to

fine-tune properties of the alkylating reagent. The right

reagent to achieve selective Dha formation can then be

chosen with respect to the local environment of the

targeted Cys [37].

The unique chemical properties and ultra-low natural

abundance of SeCys also make it a possible Dha precur-

sor. SeCys itself can be introduced into proteins [38]

directly (under the control of the SECIS RNA element)
www.sciencedirect.com 
[39], by native chemical ligation [38,40�,41], SeCys-medi-

ated expressed protein ligation [42], or in modified-forms

(e.g. phenyl-selenocysteine (PhSeCys) [43] or selena-Lys
variants [44,45]) by amber codon suppression. These can

be converted to Dha via the corresponding selenoxides

(oxidation/Cope-type elimination) using hydrogen perox-

ide or sodium periodate [43–46]; however, undesired

side-oxidations of susceptible amino acids (Met and

Cys) are also observed. Therefore, DBHDA 3 can be

used with SeCys, which, when coupled with the greater

acidity of SeCys cf Cys (pKa(SeCys) = 5.2) allows some

selectivity over Cys [40�,42].

Together these techniques have now allowed the selective

incorporation of Dha into several sites of many proteins, for

example, GFPs [47], ubiquitins [48�,49–51,52��,53], his-

tones (H2A [54], H2B [54], H3 [55] and H4 [56�]) anti-

bodies (cAbs [28�,57] and so-called ‘ThioMabs’ [33])

kinases (Aurora A [34] and p38a [58]), as well as N-acetyl
neuraminic acid lyase [59], AcrA and annexin V [56�] and

Npb [60], pantothenate synthetase [32], protease SBL

[27�], phosphatase PTPa [35], and keratin hydrogels [61].

Protein functionalization at dehydroalanine
Chemically, one facet of Dha is as an a,b-unsaturated
carbonyl moiety that can undergo conjugate (Michael-

type) addition reactions with various nucleophiles

(Figure 2a) under conditions compatible with proteins,

that is, in aqueous media at moderate pH and tempera-

tures below 40�C. Such additions to Dha in proteins

currently allow various types of b,g-bond formation:

thia-Michael, aza-Michael, selena-Michael (C–S/N/Se,

etc.) according to nature of the nucleophile.

The intermolecular reaction of Cys residues with Dha

leading to the formation of thioether-linked lanthionine

has been implicated for some time in metabolic processes

[30] and the intramolecular process is well known in certain

biosynthetic pathways in peptides, where it is typically

catalyzed by enzymes [17]. Due to relatively high concen-

trations in cells (mM), adducts of glutathione, as a natural

thiol, have been seen from Dha in peptides [30] and

proteins [19]. Demonstration of the flexibility of this reac-

tion as a method for protein modification was illustrated by

its application to various exogenous thiols, allowing instal-

lation of diverse functionality including mimics of various

PTMs, such as methylated/acetylated Lys (10a–d/11)
[27�,46]; GlcNAcylated Ser (12) [27�] and phosphorylation

(13) [27�]. Since then, a wide variety of thiols, from smaller,

for example, alkyl polar (14–16) [62��] and aromatic-con-

taining (17, 18) [63] right up to larger, for example, peptides

[53,60] have been successfully introduced, allowing various

applications (see below).

Recently, the reactivity of Dha in proteins with N-hetero-
cycles [32], amines, hydroxylamines and hydrazines [33]

in aza-Michael additions was demonstrated allowing
Current Opinion in Chemical Biology 2018, 46:71–81
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Figure 2
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Selected amino acid and post-translational modification (PTM) mimics introduced to proteins via (a) nucleophilic (thia-, aza-, selena-Michael), and

(b) radical additions to dehydroalanine, listed by type of a newly formed bond. Protein from PDB: 1N2E [89].
creation of histidine (His) analogues (19a,b) [32], or

conjugation via modified aminoalanine formation [33]

using benzylamines (20a–c) or other amino a-nucleo-
philes (21, 22).

Only one example of selena-Michael addition to Dha has

been reported [64�], inspired by the intermediacy of Dha in

allowing b,g-C–Se bond formation in SeCys biosynthesis.

Se-allyl-selenocysteine 24was installed by in situgeneration
Current Opinion in Chemical Biology 2018, 46:71–81 
of a suitable seleno-nucleophile from the precursor allylse-

lenocyanate, and enabled further functionalization of his-

tone proteins by Se-relayed olefin cross-metathesis and

then oxidative removal, as a series of reactions that chemi-

cally mimic epigenetic ‘write-read-erase’ cycles.

Dha, as well as acting as a competent conjugate-electrophile,

has the potential for othermodes of reactivity. Its potential as

an efficient partner radical acceptor (‘SOMO-phile’) in
www.sciencedirect.com
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carbon-centred C� radical additions to proteins was recently

demonstrated (Figure 2b) [20,56�,65] thereby allowing the

first examples of C(sp3)–C(sp3) bond formation on proteins

and demonstrating a proof-of-principle in realising the pre-

viously suggested [66,67] potential of ‘post-translational

chemical mutagenesis’. Dha provides good radical acceptor

reactivity and, hence, chemoselectivity in the typical back-

ground of inertnessafforded by mostnaturalprotein residues

to C� radical chemistry [68]. Addition of a C� radical to the

Cb of Dha generates a capto-dative stabilized Ca radical,

which can be suitably quenched. This allows for its use in

aqueous media using mild generation from the correspond-

ing halides (iodides and bromides) using sodium borohy-

dride [56�], or certain metals [20,56�,67,69] and can be

applied to even complex protein scaffolds. The compatibil-

ity of the method with a wide-range of unprotected side-chain

precursors, typically from just the corresponding iodide,

allows ready, rapid and divergent installation of many side

chains. This approach enables post-translational mutagene-

sis to unmodified, natural hydrophobic aliphatic (25–29) and

aromatic (30) as well as polar residues (31 and 32). For PTMs

it allows direct introduction into proteins simply through

‘pre-installation’ of the desired modification into the radical

precursor side-chain reagent of choice. This allows access to

methylated lysines 33b–e, including 13C-labelled variant 33e
useful for protein NMR studies; acetylated and formylated

lysines 34; methylated arginines 35b,c; O-glycosylated or N-
glycosylated amino acids (36 and 37) and even functional,

phosphatase-resistant carba-pSer analogues (cpSer 38a and

cf2pSer 38b).

It should be noted that despite the ready structural and

functional diversity generated by these constitutionally

native transformations, there are some key practical con-

siderations [65] in application. Detailed mechanistic anal-

ysis [56�] revealed that metal-mediated conditions can

suffer from backbone cleavage and side-reaction necessi-

tating use of a suitable hydrogen atom source for efficient

‘quenching’.

Analysis of d.r. suggests the formation of typically 1:1 D/L-

Ca-epimers at the site of mutagenesis. Notably, in some

cases the formation of epimeric mixtures by both types of

addition reactions described above can either be decon-

voluted (e.g. D versus L [55]) in functional assays (see also

below) or by refolding or crystallization that favours the

native, L-stereoisomer [59,62��]. Moreover, the appar-

ently low level of substrate control upon stereoselectivity

in most [53] (but not all [70]) additions to Dha suggests

opportunities for others modes of stereocontrol, as sug-

gested by models in amino acids [71] and peptides [72�]
(see below).

Study of PTMs using Dha protein chemistry
for installation, mimicry and recapitulation
Deciphering function of individual PTMs in proteins and

their mutual interactions has been limited by an inability to
www.sciencedirect.com 
generate pure, homogeneous post-translationally modified

proteins from natural sources. This issue can be overcome

using protein chemistry to precisely position PTMs (or

their mimics) in proteins of interest. One path is modifica-

tion via Dha (see above) and key examples have seen

application in chromatin biology, kinase activation and

mechanisms of protein ubiquitination (Figure 3).

In eukaryotic cells, DNA is bound by histone proteins

(H1, H2A, H2B, H3, and H4) into nucleosomes, forming

the basis of chromatin. Chromatin architecture has been

directly implied in gene transcription and is dynamically

regulated by a myriad of histone PTMs. To dissect

contributions to chromatin function, various approaches

to create synthetic nucleosomes with precisely positioned

PTMs have been developed and are reviewed elsewhere

[73–75]. Dha chemistry has allowed for the study of

histone PTMs (Figure 3a).

Gene transcription is regulated by the methylation and

acetylation of histone lysines [76]. Using Dha, methylated

H3 on Lys9 (mono-, di-, trimethyl and 13C-labeled tri-

methyl [56�] or thia-Lys mimics at Lys9 [45,46,55]) and

Lys79 [20] have been generated. Similarly, acetylated

histones on various lysine residues have been prepared.

These variants are recognized by native anti-LysMe and

anti-LysAc antibodies, respectively [20,45,46,55,56�].
Lys9 demethylation by lysine demethylase JMJD2A/

KDM4a could be simultaneously determined using pro-

tein MS and NMR of a labelled variant H3-[13C]Me3-

Lys9. Methylation in the thia-Lys variants of Men-Lys79

were shown to stimulate chromatin transcription [20].

Histone deacetylase (HDAC) assays using thia-Lys H3-

Ac-Lys9 variants revealed precise activity of different

HDACs. Notably, in some instances conversions of

50% were observed, revealing an HDAC selectivity that

is sensitive to Ca configuration and consistent with a 1:1

D-/L-mixture at Ca [55]. It should also be noted that use of

C–C bond-forming methods may be preferred to install

methylated Lys variants, since recent analyses have sug-

gested methylated thia-Lys may not be ideal mimics of

methylated Lys [77,78].

Radical-mediated, C–C post-translational mutagenesis

allowed the first installation of asymmetric dimethylargi-

nine into nucleosomes via Dha [56�]. Affinity proteomic

analyses revealed partners consistent with cross-talk

between H3-Arg26 and H3-Lys27 methylation in gener-

ating a repressive chromatin state.

Generation of synthetic, GlcNAcylated nucleosomes has

enabled the study of the effects of histone glycosylation

on chromatin stability and interactome. H2A-T101

GlcNAcylation was found to affect chromatin stability

by destabilizing the H3/H4 tetramer-H2A/B dimer inter-

face providing a possible model for effects on transcrip-

tion [79]. By contrast, H2B-S112 GlcNAcylation caused
Current Opinion in Chemical Biology 2018, 46:71–81
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Figure 3
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Installation of post-translational modification (PTM) mimics to proteins via dehydroalanine. (a) Selectively modified histones are assembled into

nucleosomes to probe PTM effects (phosphorylation, methylation, acetylation, O-glycosylation and N-glycosylation) on chromatin structure and

function. PDB: 1KX5 [90]. (b) Synthetic phosphorylation of kinases provides homogeneous phosphoforms that allow for dissection of the

contribution of individual phosphorylation sites to kinase activation. PDB: 1OL7 [90,91]. (c) Activity-based systems targeting ubiquitin ligases or

deubiquitinases through reaction with their active site cysteines exploit Dha-containing mono-(Ub-Dha) or diubiquitin (Ub-Ub-Dha) probes,

respectively. PDB: 1UBQ [92], 5IFR [48�].
changes in the nucleosome interactome by promoting

binding of the facilitate chromatin transcription (FACT)

complex [54].

Synthesis of both N-glycosylated and O-glycosylated his-

tone variants was enabled by C–C bond forming chemical

mutagenesis at Dha sites [56�]. Enzymatic extension to

more complex glycans catalyzed by either glycosyltrans-

ferase or endoglycosidase proved possible. Interestingly,

whilst certain synthetic N-glycans were not cleaved by

peptide-N-glycosidase (PNGase), a widely used N-
Current Opinion in Chemical Biology 2018, 46:71–81 
glycosidase, synthetic O-glycoproteins were readily

cleaved by O-glycosidases, including the human protein

O-GlcNAcase (hOGA) enzyme. hOGA has been previ-

ously considered to be selective but appears from these

experiments to be tolerant of site, side-chain and config-

uration at GlcNAcylated residues.

Histone H3 phosphorylation occurs on Ser10 during

mitosis. The detailed analysis of its effects is challeng-

ing due to the difficulty of isolating pure homogeneous

H3-pSer10 [80]. To address this issue, pCys and stable,
www.sciencedirect.com
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non-hydrolysable analogues cpSer or cf2pSer have all

been chemically installed as mimics [45,55,56�]. All are

recognized by anti-H3-pSer10 antibody and phospho-

‘reader’ proteins (14-3-3j and MORC3) suggesting

good functional similarity to pSer and applicability to

further studies of histone phosphorylation in chromatin

biology.

The key role played by protein kinases in regulation of

intracellular signalling cascades is itself triggered and

regulated by phosphorylation at multiple sites in activa-

tion loops by upstream kinases. Pure kinase phosho-forms

would allow precise study of kinase function but most

‘active’ kinase preparations from biological samples are

heterogeneous mixtures of multiple phosphoforms. Reac-

tion of Dha with thiophosphate provides a method [27�]
(Figure 3b) for site-selective chemical protein phosphor-

ylation [81] that complements recent progress in direct

pSer incorporation using amber codon suppression

[22,24,25]. When applied to certain sites in kinases it

provides a closer functional mimic of pSer than prior

approaches of so-called constitutive activation through

Glu/Asp [34,58]. Mitogen-activated protein kinase

(MAPK) p38a was chemically activated in vitro by phos-

phorylation at native site T180 — monophosphorylation

of the activation loop was sufficient to trigger activity.

However, chemical phosphorylation of T172 in the loop,

which is not enzymatically phosphorylated, led to no

activation, revealing that position within the activation

loop proves key also [58]. Interestingly, Aurora A kinase

activation loop can even be activated by extended chain

variants (e.g. phospho-2-hydroxyethylcysteine) towards

autophosphorylation as well as substrate phosphorylation

[34]. These pure mimic phosphoforms also allow rare,

detailed kinetic analyses of the modes of activation and

inhibition by current drugs [58].

Post-translational modification by ubiquitin or ubiquitin-

like proteins, tightly regulates various cellular processes

such as protein degradation, cellular localization and

DNA repair [82,83]. Many synthetic strategies have been

developed to help understand the dynamics of

ubiquitination–deubiquitination system [84,85�], includ-

ing two types of Dha-based ubiquitin activity probes

(Figure 3c). In one, when Dha is introduced to the C-

terminus of ubiquitin (giving ‘Ub-Dha’), it can be used to

covalently trap the catalytic Cys of ubiquitin ligases

[48�,50] in an activity-based manner. In this way, Ub-

Dha enabled sequential targeting of all three types of

ubiquitin ligases (E1, E2, E3) involved in a protein

ubiquitination cascade, allowing affinity-based proteomic

profiling in cancer cell extracts [48�]. In another mode,

Dha-containing probes have been designed to probe

deubiquitination. By installing a reactive Dha between

two Ub units (christened ‘Ub-Ub-Dha’) [40�,49,52��], the

catalytic Cys of deubiquitinases can also be trapped.

Ingeniously, positioning of Dha differently relative to
www.sciencedirect.com 
the scissile peptide site, enables differentiation amongst

deubiquitinases [49,52��].

Application of Dha chemistry in enzymatic and
De Novo mechanistic hypotheses
Such precise, site-selective chemical modification of pro-

teins can provide an unique opportunity for precise

changes of amino acid structure beyond the limits of

traditional biology even down to very subtle, single-atom

changes. This in turn allows mechanistic questions to be

posed for both existing (e.g. catalytic) or de novo (syn-

thetic/programmed) protein function.

Controlled alterations in enzyme active sites can probe

mechanism or alter selectivity (Figure 4a). Chemical

mutagenesis frees such experiments from the limits of

the proteinogenic residues in principle in an almost

unlimited way and Dha chemistry can provide a virtually

traceless way of accomplishing this. For instance, aza-

Michael-type chemistry allowed conversion of key active

site histidine residue, His44, to its direct regioisomer iso-
histidine (linked instead through its pros-Np atom rather

than C4) in pantothenate synthetase (PanC) from M.
tuberculosis (Mtb), suggesting an essential role as a hydro-

gen bond donor to ATP during catalysis [32]. Use of thia-

Michael-type chemistry on Dha in N-acetylneuraminic

acid lyase (NAL) from Staphylococcus aureus has enabled

chemical mutation of key active site lysine Lys165 to

g-thialysine, shifting the enzyme pH optimum from 7.4 to

6.8 [59]. And in the same enzyme (NAL), an ingenious

systematic variation of active site residues [62��] applied

thia-Michael chemistry (with each of thirteen different

thiols) to Dha residues introduced to twelve different

positions. Thiols were selected to introduce different

stereochemistry and functional groups not accessible by

other methods and allowed discovery of an NAL ‘mutant’

bearing a dihydroxy side-chain up to ten times more

efficient in NAL-catalyzed aldol reaction with erythrose

compared to the wild-type enzyme. Use of Dha as a

mutation itself can also provide insight; introduction of

Dha into Mtb protein tyrosine phosphatase PtpA has led

to the suggestion that a water-mediated bridge between

two cysteines (Cys-H2O-Cys) may confer resistance to

oxidative conditions in host macrophages [35].

As well as probing of internal enzyme active sites, key

functional sites in other proteins can be explored. In one

application, the ability to precisely install an unnatural

but responsive functional side-chain group to control an

active binding site was explored in the CDR of single-

domain antibody cAb-Lys3 [57]. Thus, chemical phos-

phorylation by Michael-type addition of thiophosphate to

Dha (see above) allowed ‘gating’ of the CDR and hence

the Ab itself. Recognition of cognate antigen lysozyme

was hence blocked and restored only in the presence of

two inputs: expression of a secreted phosphatase and the

antigen. This suggests exploration of concepts of de novo
Current Opinion in Chemical Biology 2018, 46:71–81
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Examples of functional synthetic proteins prepared via modification of dehydroalanine. (a) Modulation of enzyme activity and/or specificity by
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conditionally functional proteins as, in this case, logic

gates (here an ‘AND’) as a largely unexplored realm of

synthetic biology (Figure 4b).

The ability to allow ready conjugation via Dha has also

seen more biotechnological applications, for example in

potential therapeutics (Figure 4c). For instance, stable

and chemically defined antibody-drug conjugate (ADC)

was prepared by direct conjugation of an IgG using aza-

Michael-type reaction of a Dha residue with the piperi-

dine unit present in the anticancer drug CrizotinibTM,

giving a more homogeneous ADC variant with improved

stability in human plasma [33]. Injectable hydrogels

based on keratin have been proposed for encapsulation

and delivery of stem cells in tissue regeneration [61].

Keratin cysteines were converted to S-allylcysteines via

Dha modification followed by human mesenchymal stem

cell encapsulation and photocrosslinking of the S-allyl-

cysteines to form a hydrogel.

Conclusions and outlook
This review has highlighted the versatility of dehydroa-

lanine (Dha) as a ‘tag’ towards late-stage functionalization

of proteins. Its selective incorporation into a variety of

proteins can now be achieved through a variety of mild,

scalable and facile methods. Its chemical reactivity allows
Current Opinion in Chemical Biology 2018, 46:71–81 
the precise, chemical installation of numerous natural and

unnatural residues into proteins including post-transla-

tional modifications and their mimics. The function of, for

example, methylation, acylation, glycosylation, phosphor-

ylation and ubiquitination of histones, kinases and various

proteins can therefore be investigated and new protein

functions designed or selected-for following ‘chemical

mutagenesis’. In this way Dha methods complement

the current ‘protein modification tool box’ by allowing

proof-of-principle for broad-ranging, post-translational

mutagenesis and ‘chemical editing’ of proteins.

Clear challenges and opportunities remain. Other bond-

forming events [50,86,87][M. W. Schombs, B. G. Davis

et al., unpublished results] including those based on the

flexible reactivity of Dha [88], offer future synthetic

potential to expand this ‘chemical mutagenic/editing’

approach.

Whilst stereocontrol arising from the peptide/protein

environment has been described this tends to be modest

in most native sequences [43,46,53,70,71]. The resulting

formation of epimeric (D-/L-) mixtures is therefore a

current limitation of the synthetic functionalization of

Dha. This will be aided by the development of analytical

techniques for the determination of stereoselectivity in
www.sciencedirect.com
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modified proteins [53,56�]. Biological use will also con-

tinue to reveal the impact of configurational mixtures on

protein structure and function. Interestingly, this may not

be an issue in some functional (see above) or structural

studies. For example, in some X-ray crystallography stud-

ies only the natural ‘L-configuration-protein’ crystallizes

[59,62��]. Given the typical lack of substrate control in

stereoselectivity, there is also clear potential for reagent

or catalyst (chemical or biological) control in this regard.

Notably, in this way, stereoselective additions to Dha

have been successfully performed on amino acid and

peptide models [72�].

Such reagent/catalyst control is likely to also be a critical

additional mode of chemo-selectivity and regio-selectiv-

ity for the translation of Dha methodology into more-and-

more complex (cellular/in vivo) environments.
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