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Abstract Relapsing experimental allergic encephalomyelitis
(Cr-EAE) is commonly used to explore the pathogenesis and
efficacy of new therapies for MS, but it is unclear whether the
metabolome of Cr-EAE is comparable to human multiple
sclerosis (MS). For MS, the diagnosis and staging can be
achieved by metabolomics on blood using a combination of
magnetic resonance spectroscopy and partial least squares dis-
criminant analysis (PLS-DA). Here, we sought to discover
whether this approach could be used to differentiate between
sequential disease states in Cr-EAE and whether the same
metabolites would be discriminatory. Urine and plasma sam-
ples were obtained at different time-points from a clinically
relevant model of MS. Using PLS-DAmodelling for the urine
samples furnished some predictive models, but could not dis-
criminate between all disease states. However, PLS-DA
modelling of the plasma samples was able to distinguish

between animals with clinically silent disease (day 10, 28)
and animals with active disease (day 14, 38). We were also
able to distinguish Cr-EAE mice from naive mice at all-time
points and control mice, treated with complete Freund’s adju-
vant alone, at day 14 and 38. Key metabolites that underpin
these models included fatty acids, glucose and taurine. Two of
these metabolites, fatty acids and glucose, were also key me-
tabolites in separating relapsing-remitting MS from
secondary-progressive MS in the human study. These results
demonstrate the sensitivity of this metabolomics approach for
distinguishing between different disease states. Furthermore,
some, but not all, of the changes in metabolites were con-
served in humans and the mouse model, which could be useful
for future drug development.

Keywords Metabolomics . Experimental allergic
encephalomyelitis . Multiple sclerosis . Diagnostics . Mouse

Introduction

Multiple sclerosis (MS) is the commonest cause of progres-
sive disability in the western world (Noseworthy et al. 2000),
but our understanding of the underlying mechanisms respon-
sible for the clinical course, including the transition from re-
lapsing to progressive disease remain elusive (Bielekova and
Martin 2004). Identifying biomarkers within biofluids is con-
sidered a useful way to generate surrogate makers of disease
activity and to explore possible pathogenic mechanisms.
Urine and blood from patients with neurological disease, in-
cluding MS, have been assayed for disease-specific markers,
such as myelin basic protein-derived material indicating de-
myelination (Whitaker et al. 1994; Whitaker et al. 1995) or
neopterin as a marker of CNS inflammation (Ott et al. 1993;
Giovannoni et al. 1997). However, these studies focussed on
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the detection of either a single or a small number of specific
metabolites and although differences have been identified at a
group level, predictive value at an individual level has been
low (Kuhle et al. 2011).

The use of high field 1H-NMR on biofluid samples is be-
coming more prevalent within the literature to asses drug tox-
icity and to profile of disease activity (Hassan-Smith et al.
2012; Heather et al. 2012; Barallobre-Barreiro et al. 2013;
Meyer et al. 2013). This metabolomic approach of biofluid
profiling and statistical pattern recognition requires no a priori
knowledge, but rather identifies metabolites solely according
to their correlated variation between treatment groups (Lindon
et al. 2001). Techniques such as principal components analy-
sis (PCA) can identify distinct patterns of metabolites whose
variation as a whole is characteristic of the disease, rather than
requiring identification of a unique biomarker (Lindon et al.
2001). Partial least squares-discriminant analysis (PLS-DA)
modelling is a class based modelling system that generates
separations in the data based on user-defined classes (Lindon
et al. 2001). Therefore, PLS-DAmodelling removes the influ-
ences of non-disease specific changes. These factors could be
a range of co-variables such as gender specific metabolite
changes and drug treatment effects (Salek et al. 2010).

We have previously shown that it is possible to use such
approaches to distinguish between groups of animals injected
intracerebrally with replication-deficient recombinant adeno-
viruses expressing either TNF-α or IL-1β simply through
analysis of their urine (Griffin et al. 2004). These two adeno-
viruses induce markedly different lesions in the brain with
TNF-α inducing a predominantly macrophage-mediated pa-
thology and IL-1β a neutrophil-rich lesion. Using 1H-NMR
spectroscopy of the urine samples, coupled with PLS-DA,
clear separation of the groups was evident. This finding sug-
gests that the 1H-NMR/PLS-DA approach may be highly sen-
sitive not just to the presence of pathology within the brain,
but to differences and/or changes in pathological processes.
Furthermore, we have recently demonstrated that it is possible
to separate relapsing-remitting (RR) MS from secondary-
progressive (SP) MS using this technique on serum obtained
from MS patients (Dickens et al. 2014). The conversion from
the RR to SP stage is the key determinant of prognosis and its
prevention or delay is a major therapeutic target. Since the
optimal therapeutic strategies are markedly different between
these two disease states the ability to definitively categorise
patients is critical for treatment. The separation of RR from SP
will have important clinical utility. However, our case-
controlled study in humans did not enable interrogation of
the relapsing-remitting cycle with the level of granularity that
can be afforded by the use of a Cr-EAE model and serial
sampling.

Experimental allergic encephalomyelitis (EAE), an auto-
immune inflammatory disease of the central nervous system
(CNS), is a model for the human disease multiple sclerosis

(MS) (Lassmann 1983; Alvord 1984). The initial models
displayed acute monophasic disease, but chronic relapsing
forms of murine EAE (CrEAE) have been produced by
adapting the immunization schedule and by selection of the
mouse strain used (Brown and McFarlin 1981; Mokhtarian
et al. 1984; Zamvil et al. 1985). The Biozzi mice were selec-
tively bred by Guido Biozzi in 1972 to produce mice with a
high antibody response to sheep red blood cells; these mice
are susceptible to EAE and develop a chronic relapsing pattern
of disease characterized by lymphocyte infiltration of the
CNS, with demyelination being particularly evident in relapse
(Amor et al. 2005). As in human MS, the trigger for relapse is
poorly understood, but it is clear that different pathogenic
mechanisms appear to underlie the first and second phases
of disease. For example, radiological signs are ameliorated
by anti-IL-17A in the first phase of disease, but not so mark-
edly in the relapse (Mardiguian et al. 2013).

The aims of the current study, therefore, were to determine
whether the combined 1H-NMR/PLS-DA analysis of blood
and/or urine samples in the Cr-EAE model could (i) identify
changes in the metabolite profile prior to the appearance of
clinical signs of disease, and (ii) differentiate between differ-
ent (relapse/remission) phases of disease.

Materials and Methods

Animal Model

Urine and plasma samples were obtained from a mouse
model of chronic relapsing experimental autoimmune en-
cephalomyelitis (Cr-EAE), a more clinically-relevant
model for MS than the commonly used monophasic dis-
ease models (Jackson et al. 2009). Adult Biozzi ABH
mice were fed on a diet of jelly and high protein mash
in the cage to ensure adequate food and hydration at the
point of paralysis, when the animals can no longer reach
the overhead food and water supply. Animals were accli-
matised to this diet for a period of one week prior to Cr-
EAE induction. Cr-EAE was induced as described by
Baker and co-workers (Baker et al. 1990). Briefly, each
animal was injected subcutaneously on day 0 and day 7
with mouse spinal cord homogenate in incomplete
Freund’s adjuvant supplemented with non-viable desic-
cated, M. tuberculosis (4 mg/ml) and M. butyricum
(1 mg/ml) to produce a complete Freund’s adjuvant
(CFA). A group of control animals (CFA) was injected
with our CFA, but omitting the spinal cord homogenate.
Animals were weighed daily and assessed for clinical
signs using the following scoring system: 0, healthy an-
imal; 1, tail paralysis; 2, weakness in hind limbs, 3; total
hind limb paralysis, 4; full limb paralysis as previously
described in (Serres et al. 2011).
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Biofluid Samples

Blood samples (0.5 mL) were taken at days 10, 14, 28 and 38
after Cr-EAE induction (n=10, 8, 9, 8 and 5 respectively for
the Cr-EAE cohort and n=8, 9, 8, 9 and 8 for the CFA control
cohort). Urine samples were collected from the animals at the
same time points (n=8, 7, 0, 7 and 6 for the Cr-EAE cohort
and n=6, 10, 0, 8 and 10 for the CFA control cohort respec-
tively). Blood and urine samples were also collected from
naïve animals (blood n=18, urine n=15). Blood was collected
by cardiac puncture using a heparin-coated syringe and placed
immediately into a blood tube containing dipotassium ethyl-
enediaminetetraacetic acid (EDTA, Teklab, UK) on ice. Blood
samples were separated by centrifugation (3000 g, 5 min,
4 °C), and the layer of plasma was removed and stored at
−80 °C. Urine samples were either collected directly from
the bladder after sacrificing the animal with CO2 or by placing
a 96-well plate underneath the animal during sacrifice.

NMR Spectroscopy

Urine or blood plasma samples were defrosted overnight in a
cold room prior to the NMR experiments and then blood sam-
ples were further centrifuged (100,000 g, 30 min, 4 °C). The
urine and plasma samples (100 μL) were placed in a 5 mm
NMR tube and diluted to a final volume of 600 μL with phos-
phate buffer (0.2 M Na2HPO4/0.04 NaH2PO4, pH 7.4, 0.1 %
sodium azide, 0.8% sodium chloride) in D2O containing 1mM
TSP (3-trimethylsilyl-1-[2,2,3,3,-2H4] propionate) as an inter-
nal standard. 1H-NMR spectra were acquired from each sample
using a 16.4 T NMR (700MHz 1H) system (Bruker Avance III
equipped with a 1H TCI cryoprobe). For all samples a 1D
NOESY pre-saturation sequence, with solvent pre-saturation
during the relaxation delay (2 s) and mixing time (10 ms),
was used. Two dimensional 1H-NMR spectra were acquired
from a sample within each group to assist with metabolite iden-
tification. The 2D Correlation Spectroscopy (COSY) spectra
were acquired on the same spectrometer as the 1D NMR spec-
tra. The COSY spectra were acquired with 1.5 s solvent
presaturation, a spectral width of 10 ppm (7002 Hz), and 16
or 32 transients per t1 increment for 256 increments. All NMR
experiments were acquired at 293 K.

Data Analysis

The 1D 1H spectra were imported into MATLAB
(Mathworks) automatically phased using a method optimised
for signal-dense spectra (Bao et al. 2013). Spectra were
inspected for gross distortions or phasing errors and discarded
as necessary at this point. Spectra were baseline corrected by
fitting a third order polynomial to regions without peaks be-
fore alignment and scaling to the TSP peak at 0.0 ppm.
Coarsely aligned spectra were subjected to non-linear warping

to correct minor shift changes arising due to pH or ionic
strength changes (Skov et al. 2006). Processed spectra were
sub-divided into 0.02 pm regions (δ=midpoint of integral re-
gion) and integrated using an in-houseMATLAB script. Serum
and plasma spectra were thus reduced to 435 independent var-
iables between 0.20–4.30 and 5.00–9.60 ppm, whilst the urine
spectra were reduced to 385 independent variables between
0.20–4.30 and 6.00–9.60 ppm. In all spectra, the region be-
tween 4.30 and 5.00 ppm was omitted due to spectrum distor-
tion arising from the water suppression at 4.7 ppm. In the urine
spectra the region between 5.00 and 6.00 ppmwas also exclud-
ed to avoid the broad resonance arising from urea. These sec-
tions represent highly variable regions of the spectrum. All data
were scaled using the Pareto variance to suppress noise in the
data. Subsequently, statistical pattern recognition was applied
to the spectra to differentiate between samples obtained from
different disease states in the Cr-EAE model.

Statistical Methods

For each group comparison, a partial least squares discrimi-
nant analysis (PLS-DA) model was derived which best ex-
plained the differences between the groups being studied
(SIMCA P+ 13.0, Umetrics, Sweden). To determine how pre-
dictive the models were likely to be, the q2 value was used. q2

is a value derived from a step-wise cross-validation of the
model whereby a fraction of the samples are removed, the
model re-built and the new model used to predict the class
of the removed samples. Specifically, q2 represents the pre-
dicted residual sum of squares (PRESS) divided by the initial
sum of squares and subtracted from 1. Avalue of q2>0 means
that the model is predictive and it is generally held that a value
of>0.4 is the threshold for significance for biological model-
ling (Waterman et al. 2010).

In addition to using the q2 values, model validation was
carried out within SIMCA using a pseudo-Monte Carlo meth-
od. To achieve this, 100 models were built with the samples
assigned to random groups. The goodness of fit of each of
these randomly permuted models was compared to the fit for
the genuine model. Only models where the genuine q2 value
was higher than 95 % or more of the randomly generated q2

values were considered predictive.

Metabolite Identification

In order to identify the metabolites the loadings were exam-
ined by use of an s-plot, and the peaks were identified using a
combination of COSY spectroscopy (Supplemental
Information 1), literature values and reference to the human
metabolome database (see Supplementary Information 2) for
full NMR assignments) (Fan 1996; Wishart et al. 2007;
Wishart et al. 2009). Further confirmation of the metabolites
was achieved by examining the J-coupling (spin-spin
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interactions between neighbouring hydrogens) of the reso-
nances within the spectra.

In order to confirm the identity of the singlet peaks which
give no correlations within the 2DCOSY spectra the predicted
metabolite was added (‘spiked’) into the NMR tube as an
authentic reference sample.

Results

Cr-EAE: Animal Model

All Cr-EAE animals followed the typical disease course re-
ported previously by Baker et al. 1990; the animals exhibited
significant weight loss and increased clinical score, which
peaked at day 17, and was followed by full remission such
that clinical score had returned to baseline values in all ani-
mals by day 26 (Fig. 1). Subsequently, the animals entered a
relapse phase, around day 32, with a second significant in-
crease in clinical score and loss of weight. During peak dis-
ease Cr-EAE animals were hand-fed to reduce dehydration
and weight loss. Injection of CFA alone (CFA group) did

not cause any overt clinical signs or significant weight loss
(Fig. 1). However, the injection of CFA does induce an im-
munological response in the animals (Billiau and Matthys
2001) and, therefore, an additional naïve control group was
used to tease out metabolite changes due to the CFA injection
alone.

Cr-EAE: Urine Analysis

Spectra obtained by 1H-NMR spectroscopy were of sufficient
resolution to allow identification of over 30 metabolites
(Fig. 2a). PLS-DA analysis of the urine spectra from the naive
animals at different time-points returned a model with a low q2

(0.10), indicating that it was not significantly predictive. Con-
sequently, all naïve data were combined thereafter and analy-
sis performed using a single control (naïve) group.

Visually, there appeared to be separation of the different
disease groups, as illustrated in Fig. 2 b, c and d. However,
although many of the urine models returned a positive q2

value indicating differences both within the Cr-EAE animals
at different time-points and between the Cr-EAE and control
(CFA or naïve) animals, only 12 models reached statistical
significance against the defined criteria of q2≥0.4 (Fig. 2;
Tables E and F). At day 10 it was possible to separate both
the Cr-EAE and the CFA animals from the naïve animals (q2=
0.55 and 0.53, respectively; Fig. 2; Tables E and F) although,
whilst strongly positive, the separation between Cr-EAE and
CFA animals at this time-point did not quite reach the defined
significance (q2=0.38). However, a significant separation was
found between the Cr-EAE and CFA animals at day 14 with a
q2 value of 0.46 (Fig. 2; Table E). Cr-EAE animals at day 38
showed a positive separation from all other Cr-EAE time-
points and also from the CFA and naïve controls (Fig. 2,
Tables E and F).

CFA animals at day 10 showed a positive separation from
both days 14 and 38 (q2=0.47 and 0.5, respectively; Fig. 2;
Table E), and at day 28 the CFA animals showed a separation
from the naïve cohort (q2=0.5; Fig. 2; Table F).
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Fig. 1 a A graph showing the clinical scores of the mice with Cr-EAE
and CFA alone. Arrows indicate when the samples were taken from each
animal. bA graph showing the percentage weight loss of the both the Cr-
EAE and CFA animals

�Fig. 2 EAE urine model results a 1H NMRNOESY-presat spectrum of a
urine sample from a Day 38 animal. b PLS-DA plot of animal urine
samples comparing EAE animals at Day 38 (black squares) and EAE
animals at Day 28 (grey squares). c PLS-DA plot of animal urine
samples comparing EAE animals at Day 38 (black squares) and naïve
animals (grey triangles). d PLS-DA plot of animal urine samples
comparing EAE animals at Day 38 (black squares) and CFA animals at
Day 38 (grey circles) e Table showing the q2 values of all the animal
models along with key metabolites identified. Values on the white
background shows the EAE v EAE comparison, values on a light grey
background shows the EAE v CFA comparisons and the values on the
dark grey background shows the CFA v CFA comparisons. f Table to
show the q2 values of EAE and CFA animals at different time points
compared to a naïve group of animals along with key metabolites
identified. n.p. = not predictive (i.e., q2 value<0)
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The loadings from the statistically significant models gen-
erated for the disease time course identified several key me-
tabolites that were responsible for the separations between

groups (see Supplemental Information 2 for full literature
assignments). Here δx-y is defined as the chemical shift of
the centre of the integral range used as a variable. In particular,
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citrate (δx-y 2.50, 2.65), creatine (δx-y 3.03), taurine (δx-y 3.25,
3.40), an unassigned set of resonances (δx-y 3.13, two singlets
in close proximity to each other), trimethylamine-N-oxide
(TMAO; δx-y 3.26), trimethylamine (TMA; δx-y 2.89) and
ureidopropionic acid (δx-y 2.37) all varied significantly over
the disease time course. The identity of these last three metab-
olites was confirmed by spiking experiments (Fig. 3).With the
exception of ureidopropionic acid, the same metabolites were
also identified when comparing Cr-EAE animals with the two
control groups (CFA and naïve). In addition, phosphocholine
(δx-y 3.23), also confirmed by spiking (Fig. 3d), was an im-
portant contributor to the model separating Cr-EAE and CFA
animals at day 38. For detailed metabolite changes see Fig. 2e.

Cr-EAE: Plasma Analysis

As for the urine, PLS-DA analysis of the plasma spectra from
the naive animals at different time-points returned a model
with a low q2 (0.176), indicating that it was not significantly
predictive. Consequently, all naïve data were combined there-
after and analysis performed using a single control (naïve)
group.

Although the spectra from all groups looked superfi-
cially similar upon initial overlay, the multi-variant sta-
tistical analysis of the data sets showed predictive sepa-
rations between the Cr-EAE at all-time points when plas-
ma was collected. It was also possible to generate pre-
dictive models that separated the Cr-EAE and CFA con-
trol groups at days 14 and 38 when the animals were
showing overt clinical signs. It was not possible to sep-
arate out the Cr-EAE animals from the CFA controls at
day 10 and day 28 when the disease is clinically silent.
However, it was possible to generate predictive models

between the EAE animals and the naïve controls
(Fig. 4e). It was also possible to generate predictive
models based on the spectra from the plasma of the
CFA animals across the time course (Fig. 4e).

On examination of the loadings within the PLS-DAmodels
for the Cr-EAE time course several keymetabolites were iden-
tified as generating the positive separations. The models
showed variations in broad resonances likely to be fatty acids
(δx-y 0.88, 1.58, 2.03), taurine (δx-y 3.25), lactate (δx-y 1.32),
TMAO (δx-y 3.26), choline (δx-y 3.22), phosphocholine (δx-y
3.23) and glucose (δx-y 3.26, 5.25). For detailed changes see
Fig. 4e.

Key metabolites from the original models separating
Cr-EAE animals from the control groups (CFA or naïve)
were also identified. The metabolites that showed greatest
variation in these models were: fatty acids (δx-y 0.88,
1.58, 2.03), lactate (δx-y 1.32, 4.11), glucose (δx-y 3.25)
and phosphocholine (δx-y 3.23). When the data from CFA

Fig. 3 Urine NMR spiking
experiments. 1H NMR spectrum
of potential metabolites in order
to confirm the identity of
metabolites with a singlet
resonance. (a, orange) Baseline
1H NMR NOESYof animal
urine. (b, purple) Addition of
ureidopropionic acid. (c, red)
Addition of TMAO. (d, Green)
Addition of phosphocholine. (e,
blue) Addition of TMA

�Fig. 4 EAE plasmamodel results a 1HNMRNOESY-presat spectrum of
an EAE animal plasma sample at Day 38. b PLS-DA plot of animal
plasma samples comparing EAE animals at Day 38 (black squares) and
EAE animals at Day 28 (grey squares). c PLS-DA plot of animal plasma
samples comparing EAE animals at Day 38 (black squares) and naïve
animals (grey triangles). d PLS-DA plot of animal plasma samples
comparing EAE animals at Day 38 (black squares) and CFA animals at
Day 38 (grey circles) e Table showing the q2 values of all the animal
models along with key metabolites identified. Values on the white
background shows the EAE v EAE comparison, values on a light grey
background shows the EAE v CFA comparisons and the values on the
dark grey background shows the CFA v CFA comparisons. f
Table showing the q2 values of EAE animals at different time points
compared to a naïve group of animals along with key metabolites
identified
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animals were compared with the naïve cohort it was again
possible to separate the animals at all time-points except
day 28. For a detailed description of the metabolite chang-
es within the plasma see Fig. 4f.

Discussion

In this study we have demonstrated that through the use of
PLS-DA modelling of the 1H-NMR spectra acquired from
urine and plasma samples it is possible not only to differenti-
ate Cr-EAE animals from control groups, but also to differen-
tiate between different stages of the Cr-EAE disease time
course. For all positive models, the majority of metabolites
in the urine or plasma samples eliciting the separations have
been identified. Overall, the plasma models were found to
provide more robust results than models generated using data
from urine samples. Perhaps most surprising was the ability to
separate the first phase of disability from the second phase of
disability (relapse), which suggests that the underlying disease
mechanisms might be different.

We have previously shown, using metabolomic analysis of
urine samples, that it is possible to differentiate between in-
flammatory lesions with distinct histopathology in the basal
ganglia induced by injection of adenovirus causing overex-
pression of either Il-1β or TNF-α (Griffin et al. 2004). On
this basis, we hypothesised that it would be possible to follow
disease progression in a chronic relapsing remitting model of
MS by urine analysis. The results of this study demonstrate
that it is possible to generate discriminative models (q2>0.40)
in some, but not all, cases. It has previously been shown that
diet in healthy humans has a greater effect on urine metabolite
composition than plasma metabolite composition from the
same subject (Walsh et al. 2006). In our study, the diet of the
animals is likely to have varied over the disease time course,
as they were given access to a mixed high-energy diet to
prevent excessive weight loss. Thus, variation in diet may
account for the lack of significance in some models. At the
same time, urine production varied considerably between an-
imals resulting in variable metabolite dilution. However, it
was important to determine whether models could be gener-
ated without restricting diet or controlling urine production in
order to assess the potential for translation of this approach to
the clinic.

Where q2 values>0.4 were generated in the urine-based
or plasma-based models, separation between the pre-
symptomatic, day 10 time-point and naïve animals was
achieved for both Cr-EAE and CFA groups. CFA is key
to the induction of EAE as it generates a Th1-type immu-
nological response, and this might be expected to generate
some metabolic changes per se (‘t Hart et al. 2011). A
small drop in weight also accompanied the CFA injection
alone. Comparison of Cr-EAE and CFA animals at day 10

did not show significance in the urine analysis, and it is
likely that the effects of the CFA injection are still dom-
inant in the metabolite profile at this time-point. The ef-
fects of CFA are also clearly identifiable at day 28 dem-
onstrating that the injection of CFA alone causes a shift in
the metabolism of the animals.

CFA injections alone have previously been shown to cause
lasting effects such as inducing arthritis-like pathology (Fan
et al. 2005). However, by day 14 it was possible to generate a
predictive model between the Cr-EAE animals and the CFA
animals. At this time-point the Cr-EAE animals showed clear
clinical signs, usually with complete tail paralysis. Thus, it
would be anticipated that any metabolite markers caused by
the induction of Cr-EAE would be substantially elevated at this
time-point in accord with these behavioural findings. Impor-
tantly, at day 28, when the Cr-EAE animals had recovered from
the initial phase of disease and showed no overt clinical signs, it
was no longer possible to separate the Cr-EAE animals from the
CFA and naïve controls. Thus, the changes in the Cr-EAE urine
metabolite profile appear to return to normal levels during this
remission phase. The analysis of urine did not provide a good
model for separating RR from SPMS (Dickens et al. 2014), but
the results of the present study suggest that urine analysis by
1H-NMR/PLS-DA might be useful for monitoring relapse in
MS where, unless lesions are present in topologically sensitive
sites, EDSS scores may be misleading. This is highlighted by
the well known clinico-radiological paradox (Barkhof 2002) in
which EDSS score does not correlate very well with radiolog-
ical outcome by MRI.

The plasma models were able to separate all of the Cr-EAE
time-points, with significant q2 values, including separation be-
tween time-points when the disease was clinically silent, such
as days 10 and 28. It was also possible to separate Cr-EAE from
the two control groups, CFA alone and naïve animals, at all of
the time-points. As for the urine analysis, it appears that the
effects of CFA alone complicated the models in the early phase
of the disease. Interestingly, although it was also possible to
separate the CFA and naïve groups across most of the time-
points (day 10 and 38), these models were driven by fewer
metabolites, including glucose, lactate and choline. Whilst glu-
cose and lactate also varied in the Cr-EAE animals, these me-
tabolites changed in the opposite direction, relative to the naïve
animals, compared to the CFA animals.

Perhaps the most important result was obtained at day 38
when the Cr-EAE animals entered the first relapse phase, and
when the pathology is most relevant to human MS. While this
phase is usually less severe than the initial phase of disease in
this experimental model, it is hypothesised that disability ob-
served in the subsequent relapse contains a greater element of
progressive neuronal damage with less oedema than in the
first phase (Ahmed et al. 2001). Furthermore, the use of the
acute inflammatory stage of any EAE model has been called
in question due to its perceived lack of relevance to the more
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chronic condition in MS (Matsumo et al. 2005; Steinman and
Zamvil 2005; Ransohoff 2012). However, the Biozzi Cr-EAE
has both the acute phases and then a progressive phase of dis-
ease with relapse superimposed on top (Amor et al. 2005). This
model has been used to assess novel MS therapies such as anti-
IL17 and clear differences in neuroinflammation can be ob-
served (Serres et al. 2011; Mardiguian et al. 2013). Using the
metabolomics approach it was possible to separate the Cr-EAE
animals at this time-point from all other time-points in the dis-
ease and also from both of the control groups. Furthermore,
Glucose and lactate were decreased at day 38 relative to day
28 in the Cr-EAE animals. This follows a similar pattern ob-
served in humans where glucose and lactate were reduced in the
SP-MS patients compared to the RR-MS. Previous studies have
demonstrated that if the animals are allowed to survive beyond
35 days they never fully recover to baseline suggesting that the
underlying disease is progressing towards a more SP-like phe-
notype. These metabolite changes may, or may not, arise direct-
ly from the CNS disease, and could instead result from a gen-
eral perturbation of peripheral metabolism owing to either a
stress response or alterations in the peripheral immune
system(Griffin et al. 2004).

Conclusions

Here we show that a combination of 1H-NMR and PLS-DA
modelling can discriminate between different disease states in
a clinically relevant model of relapsing MS, and that some of
the metabolites that underpin these models are similar to those
observed in humans. This finding suggests that the biofluid
metabolomics approach together with this animal model could
be used to assess future MS therapies aimed at preventing
progressive disease. Furthermore, these data support the
blood-borne markers for the diagnosis of brain disease
allowing a non-invasive and relatively inexpensive method
for this type of diagnosis.
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