
Single-molecule interrogation of a bacterial
sugar transporter allows the discovery of an
extracellular inhibitor
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Capsular polysaccharides form the outermost protective layer around many Gram-negative bacteria. Antibiotics aimed
directly at weakening this layer are not yet available. In pathogenic Escherichia coli E69, a protein, Wza, forms a pore in
the outer membrane that transports K30 capsular polysaccharide from its site of synthesis to the outside of the cell. This
therefore represents a prospective antibiotic target. Here we test a variety of grommet-like mimics of K30 capsular
polysaccharide on wild-type Wza and on mutant open forms of the pore by electrical recording in planar lipid bilayers. The
most effective glycomimetic was the unnatural cyclic octasaccharide octakis(6-deoxy-6-amino)cyclomaltooctaose
(am8gCD), which blocks the a-helix barrel of Wza, a site that is directly accessible from the external medium. This
glycomimetic inhibited K30 polysaccharide transport in live E. coli E69. With the protective outer membrane disrupted, the
bacteria can be recognized and killed by the human immune system.

B
y 2004, over 70% of pathogenic bacteria had acquired resistance
to at least one commercially available antibiotic1. Recent years
have seen an alarming trend towards combined resistance2. As

a consequence, over the last seven years, the pharmaceutical indus-
try worldwide has spent more than 30 billion dollars on the devel-
opment of new antibiotics. However, as microorganisms continue to
acquire resistance, the value of this investment and the effectiveness
of drugs aimed at current targets are diminishing3. Accordingly,
antibiotics that act on new targets and developing superior strategies
for screening their effectiveness are of central importance.

High-molecular-weight capsular polysaccharides (CPSs) form
the outermost protective layer of many Gram-negative bacteria4–6.
Antibiotics aimed directly at weakening the CPS layer are not yet
available, although antimicrobial peptides, salicylate and bismuth
compounds inhibit CPS production7,8. CPS offers a defence
against environmental factors, including attack by the immune
system of the host9,10. The outer membrane of Gram-negative bac-
teria has an underlying second protective layer of lipopolysacchar-
ides (LPSs)4,11. There are approximately 80 different K-antigens
(CPS) and 170 O-antigens (LPS) found in different Escherichia
coli strains. Of the CPS variants, groups 1 and 4 share the same
assembly system, which includes the protein pore Wza10. Several
other bacterial species make use of a transport system that includes
Wza, including Klebsiella pneumonia, Actinobacillus suis and
Bordetella bronchiseptica. X-ray analysis of Wza reveals a structure
that includes a novel eight-helix barrel12. The bulk of the Wza
octamer, which contains a spacious central lumen, has been
deduced to lie in the periplasm, with the helix barrel spanning the
outer membrane (Fig. 1a).

Here, we screen Wza, by carrying out single-channel electri-
cal recording in planar lipid bilayers, for blockers that act when
applied to the extracellular aspect of the pore (Supplementary

Fig. S1). Screening was facilitated by exploiting open forms of
Wza prepared by mutagenesis. The most effective glycomimetic
blocker discovered by this approach, octakis(6-deoxy-6-amino)-
cyclomaltooctaose (am8gCD, 13), acts on living bacteria to
cause loss of CPS, which in turn exposes the bacteria to
immune attack.

Results
Engineering an open form of Wza. The X-ray structure12 of wild-
type (WT) Wza (PDB: 2J58) suggested a very narrow opening, �8 Å
in diameter, from the medium to the pore lumen, at the end of the
protein that lies closest to the peptidoglycan layer in the intact
bacterium (Fig. 1). A conductance histogram of the WT pore
from E. coli revealed sequential insertion events yielding active
pores with a mean single channel current of 1.9+0.2 pA (n¼ 37)
at þ100 mV in 2 M KCl, corresponding to a unitary conductance
of 19+2 pS (n¼ 37) (Supplementary Fig. S2).

Having established pore-forming activity from Wza extracted
from bacteria, we next tested WT Wza expressed in a cell-free
system. After in vitro transcription and translation (IVTT)13,14, the
octamer, which formed spontaneously, was purified by SDS-poly-
acrylamide electrophoresis (SDS-PAGE; Fig. 2a, lane 1). The I–V
curves of WT Wza octamers extracted from E. coli and prepared
by IVTT were very similar (Supplementary Fig. S3). The WT Wza
channel did not show significant ion selectivity (Supplementary
Figs S4–S6).

We next sought mutant pores of higher unitary conductance that
would mimic the state found in living bacteria, where Wza is held
open by the inner membrane protein Wzc15. Examination of the
crystal structure12 suggested replacement of tyrosine residues at
position 110, which line the narrowest region of the pore
lumen (Fig. 1b), with glycine. In addition, cysteine residues were
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Figure 1 | Models of sections of WT Wza, Wza Y110G/K375C and Wza DP106-A107 and their pore radii. The models were generated with MODELLER24

v9.6 by using the WT Wza crystal structure (PDB: 2J58) as a template. The pore radii were determined with HOLE49 and visualized in VMD50. The blue

surface represents regions of the pore where the radius is .2.30 Å, while green indicates regions where the passage has narrowed to a radius between

1.15 Å and 2.30 Å. a, WT Wza. Tyr-373, orange; Glu-369, cyan; Tyr-110, yellow. b, Pore radii of WT Wza (black), Y110G/K375C (blue) and DP106-A107

(red). c, a-Helix barrel of WT Wza. Tyr-373, orange; Glu-369, cyan. d, Periplasmic loops of WT Wza. Tyr-110, yellow. e, a-Helix barrel of Wza Y110G/K375C.

Tyr-373, orange; Glu-369, cyan; Cys-375, purple. f, Periplasmic loops of Wza Y110G/K375C. Gly-110, yellow. g, a-Helix barrel of Wza DP106-A107. Tyr-371,

orange; Glu-367, cyan. h, Periplasmic loops of Wza DP106-A107. Tyr-108, yellow.
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Figure 2 | Preparation and electrical properties of WT Wza and Wza mutants. a, Radiolabelled Wza proteins were expressed by IVTT and subjected to

SDS-PAGE. An autoradiograph is shown, with markers alongside. M, protein markers. b, Setup for single-channel recording with the Wza pore in a planar

bilayer system. The protein is inserted into the bilayer from the cis chamber (ground). c, Unitary conductance values for WT and mutant Wza octamers in

KCl buffers (for numerical values see Supplementary Fig. S14). Black filled bars indicate values in 2 M KCl buffer; open bars indicate values in 300 mM KCl

buffer. d, I–V curve for WT Wza in 2 M KCl, 5 mM HEPES, 100 mM EDTA, 200mM DTT, pH 7.5 (n¼ 3). e, I–V curves of mutants Y110G (red, n¼ 3),

Y110G/K375C (blue, n¼ 3) and DP106-A107 (black, n¼ 3) in 2 M KCl, 5 mM HEPES, 100 mM EDTA, 200 mM DTT, pH 7.5. f, I–V curves of mutants Y110G

(red, n¼ 3) and DP106-A107 (black, n¼ 3) in 300 mM KCl, 5 mM HEPES, pH 7.5. Mean values (+s.d.) from at least three independent experiments

are shown in c–f.
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introduced at position 375 at the entrance of the a-helix barrel
(Y110G/K375C, Fig. 1e) so that it could be confirmed, by
reversible blockade with a thiol-selective protein modification
reagent16,17, that the measured current was a result of ion flow
through the Wza pore. The narrowest constriction within WT
Wza has a diameter of 3.7 Å, whereas the narrowest constriction
within Y110G/K375C, which remains at the same site, has a
diameter of 10.5 Å (Fig. 1f).

By observing stepwise insertion events at þ50 mV, the current
carried by the octameric Y110G/K375C pore (Fig. 2a, lane 3)
was determined to be þ88+10 pA in 2 M KCl, (n¼ 31,
Supplementary Fig. S7), 1,800+200 pS (n¼ 31). The single-
channel I–V curve (Fig. 2e, blue) shows that the pore is stable
over a range of potentials. In addition, the reaction between the
eight Cys-375 residues and (2-sulfonatoethyl)methanethiosulfonate
(MTSES)18, added to the trans compartment (Fig. 2b), confirmed
that the current passes through the eight-helix barrel. The current
was reduced to zero, presumably by the formation of mixed
disulfide bonds with Cys-375 (Fig. 3a�b or d�e), and the pore
was re-opened by the addition of excess reduced dithiothreitol
(trans) (Fig. 3b�c or e�f ).

Screening for Wza blockers. Single-channel recording has proven
effective in searches for channel blockers, including, as in the
present case, blockers for large pores19–21. In an early example,
we showed that cyclodextrins block the staphylococcal
a-haemolysin pore22. Structural studies20 have shown that the
cyclodextrins act as ‘grommets’, with their axis of rotational
symmetry aligned with that of the pore20,23. We therefore
reasoned that cyclodextrins and related structures might block
Wza, especially if the blocker and target were matched in
symmetry20,23, although we noted that the previous examples
mostly involved transmembrane b-barrels. We further argued
that K30 CPS, during transport through Wza, might adopt a
helical structure24–30 that would be guided by an external display
of both hydrogen-bonding capacity and charge along its loose
‘cylindrical surface’ (see Supplementary Fig. S8 for a model).
Therefore, cyclic oligosaccharides (cyclodextrins) and other
sugar-like (glycomimetic) compounds capable of mimicking
cross-sections of this ‘saccharidic cylinder’ (estimated diameter
of 17–21 Å, Supplementary Fig. S8) would be adept at binding
within Wza by exploiting charge–charge and hydrogen bonding
interactions at the narrowest region of Wza within the alpha
helix barrel (Fig. 4a,b). Based on both the earlier examples of
b-barrel grommets and this putative, ‘sectional glycomimicry’,

we postulated that Wza might have a binding site, as yet
undiscovered, that we could target with cyclic glycomimetics (Fig. 4b).

We examined a panel of compounds by planar bilayer record-
ing with WT Wza and Y110G/K375C (compounds 1–16,
Supplementary Fig. S9, Supplementary Table S1). Suggesting a
selective interaction, only two compounds elicited clear current
blockades: cyclic heptasaccharide am7bCD (10, Fig. 4c) and cyclic
octasaccharide am8gCD (13, Fig. 4c).

Am7bCD 10 (trans) blocked the WT Wza pore with Kd¼ 13+7 mM
(n¼ 3) in 2 M KCl, at þ75 mV (Fig. 5a). The interaction between
WT Wza and am8gCD 13 was not detectable (Supplementary
Fig. S10). Am7bCD 10 also interacted with the Y110G/K375C
pore with Kd¼ 2.1+0.5 mM (þ75 mV, n¼ 3) (Fig. 5b). The Kd
values with Y110G/K375C at a low applied potential (þ3 mV) in
2 M KCl were 2.9+1.8 mM (n¼ 3) for Y110G/K375C.10 and
13+2 mM (n¼ 3) for Y110G/K375C.13.

The promising activity of am8gCD 13, more than 200-fold more
potent than am7bCD 10 with Y110G/K375C, was examined in
greater detail. Notably, the affinity of am8gCD 13 was voltage-
dependent (Fig. 5h, blue), dropping from 13+2 mM (n¼ 3) at
þ3 mV to 220+14 mM (n¼ 3) at þ35 mV for Y110G/K375C.
The affinity of am7bCD 10 varied much less with voltage.
Importantly, despite its voltage dependency, the binding of
am8gCD 13 to Y110G/K375C was similarly strong at both low posi-
tive and low negative potentials (þ3 mV and 23 mV, for example,
Fig. 5c,h). This is significant because the potential across the outer
membrane of E. coli is low, ,7 mV (inside negative) in
.300 mM NaCl31–33, and experiments at high potentials are there-
fore less relevant to live cells.

To better understand the interaction, the kinetics of am8gCD 13
binding to the Y110G/K375C pore were investigated. koff values
were obtained over a range of potentials (Supplementary
Fig. S11a,b). Notably, toff dropped dramatically at .þ15 mV,
suggesting that am8gCD 13 translocates through the pore when
driven by higher potentials. Dissociation constants (Kd) for
Y110G/K375C.13 were derived from the koff and kon
(Supplementary Fig. S11c) values. The lowest value of Kd was
6.8+1.0 mM (n¼ 3) at þ10 mV (Fig. 5h, blue). Log Kd displayed
a linear correlation with the applied potential, both above and
below the þ10 mV threshold, consistent with Woodhull’s model
for voltage-dependent binding of a charged channel blocker34,35.

Blockade of Wza with an unaltered a-helix barrel. We next
examined the blocking of Wza pores with various mutations, to
discover the am8gCD 13 binding site. The DV89-R169 and
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DV89-I249 mutants (deletions of the entire domains 1 or domains 1
and 2, respectively) could be expressed as monomers but did not
self-assemble (Fig. 2a, lanes 7 and 8) and so were not examined
further. Of the mutants that did form octamers, DP106-A107 had
the highest unitary conductance (2.8+0.2 nS, n¼ 3) and was the
least prone to gating in 2 M KCl (I–V curve; Fig. 2e, black).
DP106-A107 was also blocked by am8gCD 13 (Fig. 5f ), and the
log Kd–V curve (Fig. 5h, black) closely resembled that of
Y110G/K375C (Fig. 5h, blue). Y110G was also examined (Fig. 5e,
left; Fig. 2e, red). The Kd for Y110G.13 in 2 M KCl was also close
to the value for DP106-A107 (Supplementary Table S3) and the
other mutants with unaltered a-helix barrels. The lifetimes of the

complexes between am8gCD 13 and the mutant Wza pores with
unaltered barrels were distributed as single exponential functions,
suggesting a single binding site for 13 within the pore lumen
(Supplementary Fig. S12).

Interaction of blocker with proteolytically cleaved WT Wza. Our
results demonstrate that am8gCD 13 blocks Wza pores with intact
a-helix barrels, suggesting the barrel as a possible binding site.
The outer diameter of am8gCD 13 is �17 Å, similar to the
internal diameter (17 Å) of the a-helix barrel of Wza. However,
the periplasmic (cis) end of the protein, which lies close to the
peptidoglycan layer in cells, also has a narrow entrance. To
distinguish between these two sites, we digested the cis end of the
pore with proteinase K, after it had inserted into a planar bilayer.
After digestion, WT Wza yielded a highly conductive pore in
2 M KCl, with rare current spikes (Fig. 6b). The current at þ100 mV
was 711+46 pA (n¼ 7, unitary conductance¼ 7,110+460 pS).
Despite the loss of the cis end, am8gCD 13 (trans) produced
current blockades. The overall Kd (all levels) of cleaved WT Wza.13
was 57+22 nM (n¼ 3) at þ100 mV. The continued ability of WT
Wza.13 to block the proteolysed pore implicated the a-helix barrel
in binding.

Identification of amino acids involved in blocker binding. To
further define the binding site, two additional mutant pores were
prepared that had cysteine side chains that project into the lumen
of the a-helix barrel: Y110G/Y373C and Y110G/E369C
(Fig. 6e,g). The I–V curves of the Y110G/Y373C and
Y110G/E369C pores (Supplementary Fig. S13) suggested that, like
their progenitor Y110G, both were more open at the periplasmic
end by comparison with WT Wza. The addition of MTSES closed
these pores, consistent with the presence of cysteine residues
within the lumen. However, the Y110G/Y373C pore interacted
only weakly with am8gCD 13 (trans, Fig. 6f, right) with a Kd
value of 1.0+0.3 mM (þ3 mV, n¼ 3) (Supplementary Table S3),
suggesting that the Tyr-373 residues are required for tight binding
of the blocker. Moreover, Y110G/E369C did not interact at all
with am8gCD 13, even at a high concentration (200 mM, trans,
Fig. 6h, right), so the Glu-369 residues within the a-helix barrel
are critical for the binding of am8gCD 13. Together, these results
pinpoint the blocker binding site within the a-helix barrel.

To further investigate the molecular basis of this interaction, we
used computational docking. This revealed a preferred confor-
mation in which the C8-axis of 13 is essentially co-aligned with
that of Wza (Supplementary Fig. S15). As a result, and consistent
with our experimental results, each sugar residue displays essentially
identical interactions with each protein subunit to create a
‘grommet-like’ binding mode. Consistent with our initial design,
both charged groups and sugar hydroxyls create an extensive
network of salt bridges and hydrogen bonding. The protonated
NH3

þ-6 ammonium, the endocyclic O-5 and the secondary OH-3
groups in 13 interact with Glu-369, Tyr-373 and Arg-372, respect-
ively (Supplementary Fig. S15, Supplementary Discussion).

Am8gCD 13 blocks Wza under simulated physiological
conditions. To evaluate the potential efficacy of am8gCD 13
upon live E. coli, the blockade of Wza was examined at very low
transmembrane potentials under conditions resembling the
environment in the human gut (that is, at low salt concentrations)
at near neutral pH36–38.

DP106-A107 gave the highest unitary conductance in the
2 M KCl buffer and was therefore used for initial tests. Its
unitary conductance in 300 mM KCl was 400+10 pS (n¼ 3) at
þ50 mV (Fig. 2c, bar 7). The interaction of am8gCD 13 with
DP106-A107 could be observed at a concentration as low as
20 nM (trans) (Fig. 5f ). The outer membrane potential at
300 mM KCl for E. coli is 27 mV (ref. 39). Blocker binding

a

b

c

K30 CPS Repeating unit of K30 CPS

Cross-section view
(Wza + CPS)

Schematic view
of CPS

17 Å 17 Å

Mimic of CPS

——

——

Cross-section
level

HO H
O

H
O

HO
HOH

O
H

O

HO

CPS

O
O

O

O
O

HO
HO

HOOC

O

O

OH

OH
OH

OH

O

HO

HO

HO

OH

OH
O

O

OH
HO

R

O

O

OH

HO R

O

O
OH

OH

R

O

OO

OH

OH

R

O
OH

OH
R

O

O

OH

HO

R

O n

n = 1, 2, 3
R = OH, OSO3 , NH3

+, OCH2CO2
–– , OPO3

2–, etc.

am6αCD 3: n = 1, R = NH3
+

am7βCD 10: n = 2, R = NH3
+

am8γCD 13: n = 3, R = NH3
+

Figure 4 | Screening of blockers against WT Wza and Wza mutants.

a, Transport of K30 CPS through the Wza pore. Sugar residues in the

repeating tetrasaccharide unit are represented by the coloured spheres

(green, a-D-mannosyl; magenta, b-D-galactosyl; yellow, a-D-galactosyl;

brown, b-D-glucuronyl). b, Left: cross-section of Wza containing the CPS

‘saccharidic cylinder’ at the cross-sectional level highlighted in a. Middle:

schematic view looking down the modelled CPS helix (Supplementary

Fig. S8) at the same cross-sectional level, showing the relative positions of

sugar residues (using the colour scheme from a). Right: size and symmetry

of grommet-like, cyclic glycomimetics (for example, based on g-cyclodextrin

scaffolds) as cross-sectional mimics of CPS. c, Structures of a selection of
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was therefore also measured at þ5 mV, equivalent to 25 mV in
E. coli. The toff value (17+4 s) for DP106-A107.13 in
300 mM KCl was much longer than in 2 M KCl (0.33+0.04 s).
The Kd for DP106-A107.13 in 300 mM KCl was 44+25 nM
(Supplementary Table S3).

Similarly, the unitary conductance of Y110G in 300 mM KCl was
0.30+0.01 nS (þ50 mV, n¼ 3), the toff value for Y110G.13 was

165+57 s (þ10 mV, n¼ 3) and the Kd of Y110G.13 was
5.6+ 2.4 nM (þ10 mV, n¼ 3, Fig. 5g).

Inhibition of Wza polysaccharide transport in E. coli. The ability
of blocker am8gCD 13 to bind tightly to the end of Wza that opens
into the medium surrounding E. coli cells suggested its application
as a prospective inhibitor of K30 CPS transport. We tested blocking

1 pA
a

1 s

1 pA

1 s

Trans

(500 μM)

10

50 pA
b

1 s

50 pA

1 s

Trans

(200 μM)
10

5 pA
c

1 s

5 pA

1 s

Trans

(5 μM)

13

5 pA
d

1 s

5 pA

1 s

Trans

(5 μM)
13

5 pA
e

1 s

5 pA

1 s

Trans

(5 μM)
13

1 pA

f

10 s
1 pA

3 min

Trans

(20 nM)
13

2 pA

g

h i j

1 min
2 pA

3 min

Trans

(20 nM)
13

3

Lo
g 

(K
d 
μM

–1
)

k o
n 

(1
04

 M
–1

 s
–1

)

k o
ff 

(s
–1

)2

1

0
–20 0 20 40 –20 0 20 40

0

50

100

150

60

40

20

0
–20 0 20 40

Applied voltage (mV) Applied voltage (mV) Applied voltage (mV)

-WT Wza

-WT Wza • 10

-Y110G/K375C

-Y110G/K375C • 10

-Y110G/K375C
-Y110G/K375C • 13

-Y110G
-Y110G • 13

-Y110G
-Y110G • 13

-ΔP106-A107

-ΔP106-A107 • 13

-ΔP106-A107

Y110G/K375C
ΔP106-A107 ΔP106-A107

-ΔP106-A107 • 13

ΔP106-A107

Figure 5 | Interaction of compounds 10 and 13 with Wza mutants. The buffers are 2 M KCl, 5 mM HEPES, 100 mM EDTA, 200 mM DTT, pH 7.5, or

300 mM KCl, 5 mM HEPES, pH 7.5. a, Interaction of WT Wza with am7bCD 10 (500 mM, trans) at þ75 mV in 2 M KCl buffer. b, Interaction of Y110G/K375C

with am7bCD 10 (200 mM, trans) at þ75 mV in 2 M KCl buffer. c, am8gCD 13 (5 mM, trans) binds to Y110G/K375C at þ3 mV in 2 M KCl buffer. d, am8gCD

13 (5 mM, trans) binds to DP106-A107 at þ3 mV in 2 M KCl buffer. e, am8gCD 13 (5 mM, trans) binds to Y110G at þ3 mV in 2 M KCl buffer. f, am8gCD 13

(20 nM) binds to DP106-A107 at þ5 mV in 300 mM KCl buffer. g, am8gCD 13 (20 nM) binds to Y110G at þ10 mV in 300 mM KCl buffer. h, Dissociation

constants (Kd) of Y110G/K375C.13 (trans, n¼ 3) and DP106-A107.13 (trans, n¼ 3) versus applied potential in 2 M KCl buffer. The y-axis (Kd) is on a

logarithmic scale. i, koff versus V curve for DP106-A107 with am8gCD 13 in 2 M KCl buffer. j, kon versus V curve for DP106-A107 with am8gCD 13 in 2 M KCl

buffer. Dashed line in a–g, 0 pA. Mean values (+s.d.) from at least three independent experiments are shown. The sampling rate is 5 kHz.

NATURE CHEMISTRY DOI: 10.1038/NCHEM.1695 ARTICLES

NATURE CHEMISTRY | VOL 5 | AUGUST 2013 | www.nature.com/naturechemistry 655

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp10
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp10
http://www.nature.com/compfinder/10.1038/nchem.1695_comp10
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/compfinder/10.1038/nchem.1695_comp13
http://www.nature.com/doifinder/10.1038/nchem.1695
www.nature.com/naturechemistry


activity on live E. coli cells with 13 and also 10 and 3 (Fig. 4), which
had proved to be less effective blockers. When pathogenic E. coli E69
(O9a:K30:H12), the reference strain for K30 antigen4,40, was grown
in the presence of these molecules, the reduction in CPS
expression41,42 was consistent with the relative abilities to block
Wza: in other words, 13 was more active than either 10 or 3 at
the same concentrations (Supplementary Fig. S16).

The reduction of K30 polysaccharide on the cell surface4,12,40 by
am8gCD 13 was studied more fully (Fig. 7a), and 13 was found to
decrease K30 CPS in a concentration-dependent manner. The mol-
ecular mass of the polysaccharide was unchanged at �180 kDa
(Supplementary Fig. S16), close to the reported value of 150 kDa
(ref. 41), suggesting that it is transport and not biosynthesis that is
inhibited. The higher inhibitory concentration (IC50¼ 51+1 mM;
Fig. 7b) than the nM affinity we observed in electrical channel
recordings could be a consequence of reduced diffusion through
the thick barrier of CPS. Interestingly, the level of LPS increased
with the decrease in CPS and became saturated at about twice the
amount observed in the absence of am8gCD 13 (Fig. 7c).

Exposure of O9a LPS to O9a LPS-specific antibodies. Inhibition
of K30 CPS transport in E69 causes defects in the capsule layer40

that should expose O9a LPS at the cell surface. To test this
hypothesis, the attachment of rabbit anti-O9a antibodies43 was
quantified by flow cytometry (FACS)44 (Supplementary Fig. S20),
which revealed a dose-dependent increase in the binding of anti-O9a
antibodies43 (Fig. 7d, bottom) to E. coli E69 cells after treatment
with am8gCD 13 (Fig. 7d, top) compared with bacteria treated with

3 or 10, consistent with their relative efficacies in blocking Wza and
inhibiting CPS transport (see above). Even at 1 mM, am8gCD 13
caused significant exposure of LPS to LPS-specific antibodies (Fig. 7e).

Complement-mediated killing of bacteria. Normal human serum
(NHS) with active complement led to only 15% killing of E69 cells
(Fig. 7f, see Supplementary Information, page 10). Consistent with
an increased vulnerability in the absence of CPS44–46, a genetically
engineered CPS-minus strain (CWG281, ref. 40) suffered 100%
killing in the presence of NHS.

We next tested the killing of bacteria treated with am8gCD 13. A
clear dose response was observed (Fig. 7f, bars 3–11), with up to
84+3% killing of E69 after 1 h at 1 mM. Am8gCD 13 alone had
no significant effect on survival in the absence of NHS, implying
that killing was complement-mediated and initiated by the ability
of am8gCD 13 to weaken the CPS barrier (Fig. 7f, bars 12,13).
Deactivated human serum (DHS) led to no killing (Fig. 7f, bar 1).

Defects in CPS will be exacerbated when cells divide in the pres-
ence of an inhibitor. After increasing the incubation time to 4 h,
1 mM am8gCD 13 completely killed E69 in the presence of NHS.
The concentration of am8gCD 13 required to kill half of the bacteria
(EC50) under these conditions was 3.2+0.5 mM (P , 0.006, n¼ 3).

Discussion
We have shown that functional Wza can be expressed and
assembled in vitro (Fig. 2a, Supplementary Fig. S2). Because of
the considerable bulk of the (periplasmic) extramembraneous
domain, bilayer insertion is vectorial (Fig. 2b). Electrical recording
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from open Wza mutants served as a ready, informative, biologically
relevant screening method for identifying pore blockers with thera-
peutic potential, as well as delineating the associated kinetic para-
meters (that is, kon, koff and hence Kd).

The most potent blocker discovered here, am8gCD 13, possesses
C8 symmetry, which matches that of its target, and might therefore
generate a cooperative binding interaction20,23. As shown here, Glu-
369, Arg-372 and Tyr-373 in each protein subunit form a previously
undiscovered binding site within the a-helix barrel of Wza that
spans the outer membrane of E. coli. Although our design of a
cross-sectional grommet that mimics a sugar helix model
(Supplementary Fig. S8) is probably overly simplistic, it is notable
that this model predicts a matched left-handed helicity for both
K30 CPS and Wza. It suggests too that K30 CPS also adopts a
pseudo-C8 symmetry (with the peripheral GlcA and Gala residues
of K30 CPS each engaging every other helix). Therefore, the next
generation of blockers could usefully explore a similar ‘alternating
design’ to test this mimicry further.

Under conditions that are close to physiological for E. coli,
am8gCD 13 blocked the Wza pore with Kd , 50 nM. The binding

site is accessible from the extracellular environment in intact cells
and therefore constitutes an excellent drug target that does not
require penetration into the periplasmic space or the interior of
the target cell. By contrast, am8gCD 13 was only mildly cytoxic
towards a human cell line (HeLa cells) (Supplementary Fig. S21).

Am8gCD 13 is the first effective inhibitor of the translocation of
K30 CPS by Wza. Without CPS, pathogenic E. coli E69 treated by
am8gCD 13 are vulnerable to human complement killing. Protein
sequence alignment (Supplementary Table S4) of Wza from
E. coli E69 (WzaK30) with homologues (≥60% identity) revealed
another 49 pathogenic bacterial species (mostly Gram-negative,
including E. coli and Klebsiella), comprising 248 pathogenic
strains, which share Glu-369 and Tyr-373 or similar residues that
have the potential to form salt bridges and/or hydrogen bonds
and therefore may also bind am8gCD 13.

Am8gCD 13 acts as a potentiator of human complement-mediated
killing; that is, am8gCD 13 is not itself antibacterial but enhances
complement-mediated killing. Accordingly, am8gCD 13 should not
be effective outside a host, thereby reducing the possibility of resist-
ance47. Its mode of action might also activate additional immune
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components. For example, Toll-like-receptor-4 recognizes LPS48,
which is exposed and increased in concentration by the action of 13.

The screening procedure developed here allowed the discovery of
a useful lead compound (am8gCD 13) that is active on live E. coli
and mediates killing in the presence of complement. The promising
activity of 13, through a new mode of action, may therefore be a pro-
totype for a distinctive category of therapeutics against bacteria.
Importantly, a similar approach will permit the rapid discovery of
a second generation of blockers that anticipate Wza mutations
that confer resistance to am8gCD 13.

Methods
Pore measurements and experiments. For full details see the Supplementary
Methods. Conductance measurements were conducted in 5 mM HEPES, 100 mM
EDTA, 200 mM DTT, pH 7.5, unless otherwise indicated. Mean inter-event intervals
(ton) were determined over a range of concentrations of blocker, which allowed the
determination of kon, the association rate constant for the formation of complexes,
over a range of applied potentials. To record under low salt conditions, a single pore
was first obtained with 2 M KCl buffer in the bilayer chamber, which was then
diluted with water (buffered with 5 mM HEPES at pH 7.5) to 300 mM KCl; below
this concentration, currents were typically too low at low potentials to measure
reliably. Structures and models of pores were generated with MODELLER24. Internal
radii along the pore axes were measured by using HOLE49 (Fig. 1b).

E. coli experiments. For inhibition experiments E. coli were grown in the presence of
blocker (1 nM, 1 mM and 1 mM). The attachment of rabbit anti-O9a antibodies43

was quantified by FACS44 by using secondary fluorescent anti-rabbit antibodies
(Supplementary Fig. S20). The difference in fluorescence between the untreated
E. coli strain E69 (Fig. 7d, bottom, black curve) and the CPS-minus strain
CWG28140 (Fig. 7d, bottom, grey curve) validated this system for measuring LPS
exposure. In contrast to its antibacterial activity, am8gCD 13 was only mildly cytoxic
towards a human cell line (HeLa cells) (median lethal dose LD50¼ 0.13+0.02 mM,
n¼ 3, Supplementary Fig. S21).
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