nance spectra and chemical analysis confirmed that the product was 3-phenyl-5-carbomethoxyhydantoin, yield 72%, m.p. 177-79°. *Anal.* Calcd. for C₁₁H₁₀N₂O₄: C, 56.40; H, 4.30; N, 11.96; mol. wt., 234.2. Found: C, 56.4; H, 4.4; N, 11.9; mol. wt., 233. The remaining product of the first p ing proton at the 5-position of 3-phenyl-5-carboethoxyhydantoin has a p K_a of 7.75 or about six orders of magnitude more acidic than diethyl malonate.

The 3-phenyl-5-carbomethoxyhydantoin was alkylated by dissolving in excess methanolic sodium methoxide and adding benzyl chloride. After the alkylation was complete, aqueous hydrochloric acid was added to hydrolyze and decarboxylate the ester. The product had an infrared spectrum identical with that of an authentic sample of 3-phenyl-5-benzylhydantoin, m.p. 166–168°, lit. 4 170–172°.

These reactions are summarized as

Stiles has shown that the chelates of β -ketoacids, prepared from ketones and magnesium methyl carbonate, could be alkylated directly.5 To investigate this technique a number of experiments were carried out in which 0.25 mole of 3-phenylhydantoin was heated to 80° in 370 ml. of 2 M magnesium methyl carbonate for 2 hr. The appropriate alkylating agent was then added and the reaction mixture heated to 100° (or reflux if the alkylating agent was of low boiling point) for 5 hr. Hydrolysis was accomplished by pouring the reaction mixture into ice and hydrochloric acid.

The products were identified as 3-phenyl-5-alkyl hydantoins by melting point, elemental analysis, and comparison of the infrared spectrum with that of authentic samples. Hydrolysis by the method of Gaudry⁶ gave the corresponding free amino acids. Table I summarizes the data for a number of amino acids prepared in this fashion.

The preparation of proline was made possible when it was found the excess alkylating agent would react with the nitrogen in the 1-position of 3-phenylhydantoin. Excess methyl iodide gave 1,5-dimethyl-3-phenylhydantoin, m.p. 145-147°, yield 68%. Substitution of 1,3-dibromopropane for the methyl iodide led directly to 1,5-trimethylene-3-phenylhydantoin.

Although 3-phenyl-5-methylhydantoin did not react with magnesium methyl carbonate, hydantoin itself and the sodium salt do undergo reaction. In this case,

		3-Phenyl-5-alkyl- hydantoina		Yield of
Amino	Alkylating	Yield.		amino
acid	agent	%	°C.	acid, %
DL-Valine	CH3CHBrCH3	40	123-125	38
DL-Leucine	CH₃CHCH₂Br	66	126 - 127	46
See Diversity	CH ₃			
DL-Phenyl- alanine	C ₆ H ₅ CH ₂ Cl	98	170-172	97
DL-Trypto- phan	CH_2N CH_3 CH_4	55	173–175	53
DL-Proline	BrCH2CH2CH2Br	48	117-119	45
DL-Lysine	$\bigcup_{C}^{C} N(CH_2)_{\epsilon}Br$	53	205-207	45°
DL-Glutamic	O ∏ NaOCCH₂CH₂CI	56	168-169	~30 ^d

TABLE I

^a Satisfactory analyses and n.m.r. data were obtained in each case. ^b Based on the starting 3-phenylhydantoin. ^c Isolated as the hydrochloride. ^d The hydrolysis was very slow and incomplete.

the initial alkylation takes place at the 3-position followed by alkylation at the 5-position. For example, if hydantoin is treated with magnesium methyl carbonate followed by benzyl chloride the product obtained is 3,5-dibenzylhydantoin, 93% yield, m.p. 145-146°. The synthetic possibilities of this multiple alkylation are being investigated.

GENERAL ELECTRIC RESEARCH LABORATORY SCHENECTADY, NEW YORK HERMAN FINKBEINER RECEIVED JANUARY 4, 1964

The Cubane System

Sir:

It is with pleasure that we report the first tactical synthesis of the cubane carbon skeleton1 and present the first observation on the electronic hybridization intrinsic to this system.

Radical-initiated reaction of N-bromosuccinimide with 2-cyclopentenone in carbon tetrachloride gives the 4-halogenated ketone I.² Subsequent bromination of I in pentane-methylene chloride at 0-10° with molecular bromine produces 2,3,4-tribromocyclopentanone (II). Double dehydrobronination of II in absolute ether at -20° with diethylamine leads to the transient bromocyclopentadienone III which, as with the unsubstituted case, undergoes spontaneous Diels-Alder dimerization. A single dimer is obtained: over-all yield from cyclopentenone, three steps, ca. 40%, m.p. (from carbon tetrachloride) 154–155° dec.; $\lambda_{\rm max}^{\rm CH_2Cl_2}$ 5.50, 5.54, 5.59 (sh), 5.77, 6.32, and 6.42 μ ;

(1) Only serendipitous syntheses of octaphenylcubane have been reported (1) Only serendipitous syntheses of octaphenylcubane have been reported previously: H. H. Freedman, J. Am Chem. Soc., 83, 2195 (1961); H. H. Freedman and D. R. Petersen, ibid., 84, 2837 (1962); G. Büchi, C. W. Perry, and E. W. Rohb, J. Org. Chem. 27, 4106 (1962); M. Tsutsui, Chem. Ind. (London), 780 (1962). The encumbering phenyl groups have prevented examination of the properties of the skeleton and indeed have left the proof of structure tenuous: R. C. Cookson and D. W. Jones, Proc. Chem. Soc., 115 (1963); H. H. Freedman and R. S. Gohlke, ibid., 249 (1962).

(2) C. H. DePuy, M. Isaks, and K. L. Eilers, Chem. Ind. (London), 429 (1961); cf. K. Hafner and K. Goliasch, Chem. Ber., 94, 2909 (1961).

⁽⁴⁾ M. Bergmann and D. Delis, Ann., 458, 89 (1927).
(5) M. Stiles, J. Am. Chem. Soc., 81, 2598 (1959).

⁽⁶⁾ R. Gaudry, Can. J. Res., 26B, 773 (1948).

τ_{CDCl}, 2.33 (1H, d), 3.68 (2H, m), 6.42 (2H, m), and 6.79 (1H, m) p.p.m.

Exact structural specifications for the dimer can be arrived at a priori, in steps: (1) the configuration of the ring fusion should be endo as it is in the equivalent dimer of cyclopentadienone,³ (2) in accord with the behavior of chlorobenzoquinone,⁴ the dienophilic reactivity of III should be least at the halogen-substituted double bond, and hence one vinyl position in the dimer should bear bromine rather than hydrogen, and (3) the interactions of like dipoles should be minimized in the geometry of the transition state for Diels-Alder dimerization of III; thus, geometry A is taken as more favorable than B and, in consequence, IV as more probable than IVa.

In fact, each of these predictions as to the structure of the dimer can be verified in full: (1) the endo configuration is essential to the subsequent light-induced ring closure (vide infra), (2) the n.m.r. spectrum shows only three vinyl protons; the absence of a nuclear resonance signal at τ ca. 4 p.p.m. confirms the substitution of halogen for hydrogen on the α -vinyl position of the cyclopentenone segment, and (3) the completed synthetic sequence leads to cubane substituted on the body diagonal vertices; this is possible only if the dimer possesses structure IV.

(3) Dicyclopentadien-1,8-dione is reduced with hydrogen over palladium to the tetrahydro derivative, which via Raney nickel reduction of the bis-thicketal is converted to endo-tetrahydrodicyclopentadiene.

(4) I. G. Farbenind A.-G., French Patent 677,296.

Ultraviolet irradiation of IV in nonpolar solvents such as benzene or methylene chloride leads to polymerization rather than the familiar ring closure reaction.5 This difficulty can be traced to the sp2 center in the one-carbon bridge and eliminated by carrying out the irradiation in methanol containing hydrogen chloride. Under these conditions IV is converted to the sp³ 8-hemiketal which undergoes ready closure into the cage system; the ultimate prod-uct is the bishemiketal of V.6 Deketalization is accomplished by heating with water and subsequent desiccation. The pure diketone V, crystallized from methylene chloride, melts at 232–233° dec., $\lambda_{\rm max}^{\rm CH_2Ch}$ 5.56 and 5.62 μ , τ_{CDC1} , 6.37 (4H, m) and 6.95 (2H, m).

Several hours reflux with 50% aqueous potassium hydroxide converts V to VI, isolated and characterized as the dimethyl ester VII; over-all yield from IV, as the dimethyl ester VII; over-all yield from IV, three steps, ca. 30%, m.p. (from hexane) $161-162^\circ$, $\lambda_{\rm max}^{\rm KBT}$ 3.33, 3.38, 3.50, 5.80 μ , and clear from 6.0 to 6.8 μ , $\epsilon_{210~\rm m\mu}^{\rm E-00II}$ 1750.8 The extrusion of the bridge carbonyl groups in the conversion V to VI can be equated mechanistically to a Favorskii reaction formulated as a benzilic acid-type rearrangement.9

The n.m.r. spectrum, coupled with analytical10 and other spectral data, establishes the structure of VII unequivocally. Over a 2000 c.p.s. sweep two and only two resonances appear, τ 5.76 and 6.28 p.p.m., equal in area and each less than one-half of one cycle wide at halfheight. These dimensions are fully appropriate only to the system now in hand. The position of the higher field absorption is typical of methyl esters, and this assignment has been confirmed by comparing the separation of the sharp C¹⁸ satellites (146 c.p.s.)¹¹ with the

literature value for methyl carbonate (147 c.p.s.). 12
We have been able to observe the C13 satellites of the proton resonance of the ring hydrogens in VII.11 As anticipated these are broadened badly by complex spin coupling, yet measurements made at both 60 and 100 Mc.p.s., at the former frequency on both the high- and low-field satellite partners, give an average value for J_{CMH} of 160 ± 5 c.p.s. In accord with presently accepted theory, 13 this can be equated to approximately 32% s-character in the ring C-H bonds. This is to be compared to 27% for cyclobutane¹⁴ and 32% for cyclopropane.^{13a} Clearly, a substantial rehybridization of normal tetrahedral carbon occurs to accommodate the geometric requirements of the cubane skeleton

- (5) P. Yates and P. Eaton, Tetrahedron, 12, 13 (1961).
- (6) The course of the reaction is followed by infrared spectroscopy
- (7) The split carbonyl band can be due to either coupled asymmetricsymmetric stretchings or possibly to Fermi resonance with the vibration seen
- at 10.43 μ .

 (8) Cf. the quoted ultraviolet spectrum of octaphenylcubane, $\lambda_{\rm max}$ 267 mμ (* 44,600), and note the problems it engenders [Cookson and Jones, see ref. 11.
- (9) Cf. A. C. Cope and B. S. Graham, J. Am. Chem. Soc.. 73, 4702 (1951).
 (10) Satisfactory analytical figures have been obtained by Mr. William Saschek, resident microanalyst, for all compounds for which physical con-A Rast determination of the molecular weight of VII gives stants are given. 229 (calcd., 220).
- (11) The authors are grateful to Prof. Gerhard Closs of this department and to Dr. Joseph Katz and Dr. Ralph Dougherty of the Argonne National Laboratory for their willing collaboration on the measurement of the C12 coupling constants.
- (12) N. Muller, J. Chem. Phys., **86**, 359 (1962). (13) (a) N. Muller and D. E. Pritchard, *ibid.*, **31**, 768, 1471 (1959). (b) N. Shoolery, *ibid.*, 1427 (1959); (e) C. Juan and H. S. Gutowsky, *ibid.*,
 - (14) C. S. Poote, Tetrahedron Letters, 579 (1963)

Work continues in these laboratories both on further syntheses of cubically symmetric molecules and, now more important, on the chemical reactions of such systems.

Acknowledgment.-The National Science Foundation, the National Institutes of Health, the Alfred P. Sloan Foundation, and the General Chemical Division of Allied Chemical Corporation each contributed generously to the support of this work.

(15) Alfred P. Sloan Foundation Fellow

DEPARTMENT OF CHEMISTRY THE UNIVERSITY OF CHICAGO CHICAGO 37, ILLINOIS PHILIP E. EATON¹⁵ Thomas W. Cole, Jr.

RECEIVED JANUARY 30, 1964

Studies in Organophosphorus Chemistry. I. Conversion of Alcohols and Phenols to Halides by Tertiary Phosphine Dihalides

We wish to report the preparation of a variety of alkyl and aryl halides in high yields using phosphorus reagents of the type R₃PX₂. 1.2 The method is outlined

$$R_{\delta}P: + X_{2} \longrightarrow R_{\delta}PX_{2} \xrightarrow{R'OH} R_{\delta}PO + HX + R'X \quad (1)$$

$$R = C_{\delta}H_{\delta} \text{ or } n\text{-}C_{\delta}H_{9}; \quad X = Br, Cl, I \quad R'; \quad = \text{alkyl or aryl}$$

Our interest in these reagents was stimulated by the consideration that only two replaceable groups are necessary and desirable in reactions of compounds of the PX5-type with alcohols.

Table I and eq. 2 give some indication of the scope

of the reaction.

	Tabi	LE I	
Alcohol	(C6H6)2PBr2 % yield of RBr2	(n-Bu)aPBr2 % yield of RBra	(CoHs)3PCl2 % yield of RCla
n-Butyl	91	93	\sim 99 b
Isobutyl	89		
Neopentyl	79	91	92
2-Butyl	.90	89	
2-Octyl	86		
2-Pentyl	~99 ^{5,c}	$\sim 99^{b,c}$ $\sim 99^{b,c}$	
3-Pentyl	~99 ^{b,c}	\sim 99 b,c	
Cyclopentyl	83	84	el el
Cyclohexyl	88	45	\sim 99 b
SS.*		(41% olefin) ^e	
α-Phenethyl	79		
Ethyl lactate	75		
t-Butyl	49		90,
	$(25\% \text{ side})^{d}$	B	(10% olefin)

a These are yields of isolated products unless otherwise indi-^c These are yields of isolated products unless otherwise indicated. Gas chromatographic analyses of crude reaction mixtures showed no side products except as indicated. ^b Gas chromatographic analysis only. ^c The isomeric bromides were separated on a 20-ft. Carbowax column. No isomer contamination was found (<1% would be detectable). ^d Isobutylene or its dibromide was isolated depending on whether RaPBr₂ was preformed or generated in situ. ^e The alkyl halide was found to eliminate under reaction conditions.

$$Z \longrightarrow OH + (C_eH_s)_3PBr_2 \xrightarrow{200^\circ}$$

$$Z \longrightarrow Br + HBr + (C_eH_s)_3PO (2)$$

$$Z = H, 92\%$$
; Cl, 90%; NO₂, 60%; CH₃O, 59%

An important characteristic of these reagents is their tendency to induce substitution without elimination or rearrangement. The cyclic halide preparations best illustrate the former point.3 The conversions of secondary pentyl and neopentyl alcohols to halides without rearrangement illustrate the latter. Phenols are converted at elevated temperatures without position isomers being formed.5

The stoichiometry shown in eq. 1 was confirmed for n-butyl bromide formation. Triphenylphosphine oxide was isolated in 92% yield and tributylphosphine oxide hydrobromide obtained in 95% yield.6 The HBr was determined titrimetrically.

Though results reported here are for chlorides and bromides, the method may be used for iodides as well.7 Dimethylformamide (DMF) or acetonitrile were the

most satisfactory solvents. n-Butyl Bromide. - Dry n-butyl alcohol (9.2 ml., 0.1 mole) was mixed with 28 g. (0.107 mole) of dry distilled triphenylphosphine⁸ in 100 ml. of dry DMF in a nitrogen atmosphere. Baker "purified" bromine was added over a 15-min. period while flask temperature was maintained below 55°. The addition was stopped when 2 drops persisted in giving the solution an orange tint. All volatile material was then removed by distillation at 5 mm. into a receiver cooled in a Dry Ice Cold water (500 ml.) was added and 9.8 g. (91%) of n-butyl bromide separated. It was carefully removed and dried and gave b.p. $100.5-102.2^{\circ}$ and n^{29} D 1.436 (lit. b.p. $100.4-100.6^{\circ}$, n^{20} D 1.43784). The product showed one peak in the gas chromatography, which was identical in retention time with that of a reference sample of n-butyl bromide.

Neopentyl Bromide.—The reaction was performed as above employing 22.0 ml. (0.088 mole) of distilled tributylphosphine,8 6.95 g. (0.079 mole) of dry neopentyl alcohol, and 4.1 ml. (0.082 mole) of bromine in 75 ml. of DMF.

The mixture was distilled at 2 mm. until no more material came over below 84°. Dilution of the distillate with cold water gave 10.89 g. (91%) of neopentyl bromide, $n^{31.5}$ D 1.4310 (lit. 10 b.p. 104.8 at 732 mm., n^{20} D 1.4370). It showed a single peak in gas chromatography with retention time identical with that of an authentic sample. It gave no precipitate with alcoholic silver nitrate.

Neopentyl Chloride. Triphenylphosphine dichloride was prepared by chlorination of 10.0 g. (0.037 mole) of

(3) P. Carré and D. Libermann, Bull. soc. chim. France, [4] 53, 1051 (1933); C. E. Wood and M. A. Comley, J. Chem. Soc., 125, 2636 (1925);
B. P. Kohler and M. C. Burnley, Am. Chem. J., 43, 413 (1910).
(4) (a) F. C. Whitmore and H. S. Rothrock, J. Am. Chem. Soc., 54, 3431

(1932); (b) L. H. Sommers, H. D. Blankman, and D. C. Miller, ibid., 73, 3542 (1951); (c) the preparations of 2- and 3-pentyl bromides from the corresponding alcohols reported here appear to be the first direct conversions in this series vithout isomerization, cf. H. Pines, A. Rudin, and V. N. Ipatieff, J. Am. Chem. Soc., 74, 4063 (1952).

367 (1915)].

(8) This substance analyzed for (n-Bu) 2PO-2/1HBr.

(7) R. L. Hershkowitz, unpublished results.
(8) Metal and Thermit Co., 100 Park Avenue, New York, N. Y.
(9) C. P. Smyth and E. W. Engel, J. Am. Chem. Soc., 51, 2651 (1929).
(10) F. C. Whitmore, E. L. Whittle, and B. R. Harriman. ibid., 61, 1785 (1939)

⁽¹⁾ These reagents do not appear to have been exploited. For a few examples see ref. 2b,c. Landauer, Rydon, and co-workers have developed a examples see in Sol. Instantial, Ayon, and to Horizon have developed a related series of reagents, (C_0H00) PRX, where X = halogen and R = alkyl, H, or halogen. 2d, e These appear to be useful reagents for the preparation of

H, or halogen. A. These appear to be useful reagents for the preparation of many alkyl and aryl halides. For descriptions of preparations and properties of R₃PX₃ see ref. 2f, 2g, and citations therein.

(2) (a) F. Fleissner, Chem. Ber., 13, 1665 (1880); (b) L. Horner, H. Oediger, and H. Hoffmann, Ann., 626, 26 (1959); (c) H. Hoffmann, L. Horner, H. G. Wippel, and D. Michael, Chem. Ber., 95, 523 (1962); (d) S. R. Landauer and H. N. Rydon, Chem. Ind. (London), 313 (1951); J. Chem. Sor., 2224 (1953); D. G. Coe, S. R. Landauer, and H. N. Rydon, ibid., 2281 (1954); (e) D. G. Coe, H. N. Rydon, and B. L. Tonge, ibid., 323 (1957); (f) V. K. Issleib and W. Seidel, Z. anorg. allgem. Chem., 288, 201 (1956); (g) G. M. Kosolapoff, "Organophosphorus Compounds,' John Wiley and Sons, Inc., New York, N. Y., 1950, p. 73.

but Michael and Noyes⁵ have reaffirmed the original suggestions. If the energy-transfer mechanism from benzophenone outlined in reactions 1 to 3 is correct, then the triplet state of the carbonyl compounds decomposes to free-radical products. These results show that it does not yield type 2 products. It can be inferred, therefore, that the type 2 decomposition takes place through a singlet intermediate as was originally suggested.

The free-radical products in the normal photodecomposition may well arise from a triplet state, but it is clear from the work of Parmenter and Noyes⁶ that the type 1 products (alkane and carbon monoxide) also arise from singlet excited states.

Acknowledgment.—The author wishes to thank the D.S.I.R. and the London Chemical Society for apparatus grants.

(5) J. L. Michael and W. A. Noyes, J. Am. Chem. Soc., 85, 1027 (1963).
(6) C. S. Parmenter and W. A. Noyes, ibid., 85, 416 (1963).

PETER BORRELL

DEPARTMENT OF CHEMISTRY UNIVERSITY OF KEELE KEELE, STAFFORDSHIRE GREAT BRITAIN

RECEIVED MAY 18, 1964

An X-Ray Diffraction Study of Nonplanar Carbanion Structures

Sir:

Recently, spectroscopic investigations of the compound KC(CN)₃ have been reported by Long, Carrington, and Cravenor, and Miller and Baer. An assignment can be made, on the basis of both infrared and Raman spectra, for either a planar trigonal or a pyramidal model for the anion. Both sets of investigators favor the planar structure. A preliminary X-ray diffraction study by Anderson and Klewe³ of KC(CN)₃ also favors a planar anion within rather large experimental limits.

We have determined, by X-ray diffraction techniques, the crystal structure of the compounds ammonium tricyanomethide, NH₄C(CN)₃, and pyridinium dicyanomethylide, $C_bH_bN^+-C^-(CN)_2$. Complete three-dimensional refinements of both structures show the trigonal carbon atom environments to be significantly nonplanar.

Both compounds crystallize in the monoclinic system with the unit cell constants shown in Table I. Both structures were solved through Patterson projections down the short axis followed by a three-dimensional analysis based on packing and other considerations.

TABLE I NH₄C(CN)₄ CaHaNa Space group C42h-P21/c C22h-P21/m $9.055 \pm 0.007 \text{ Å}$ $7.87 \pm 0.02 \,\text{Å}$ a Ъ $3.87 \pm 0.010 \text{ Å}.$ $12.512 \pm 0.004 \text{ Å}.$ $3.86 \pm 0.01 \, \text{Å}.$ $17.325 \pm 0.014 \text{ Å}.$ C β 104.6 $\pm 0.2^{\circ}$ $114.8 \pm 0.1^{\circ}$

The structure of $\mathrm{NH_4C}(CN)_3$ was refined by two-dimensional Fourier and least-squares techniques fol-

(3) P. Anderson and B. Klewe, Nature, 200, 464 (1963).

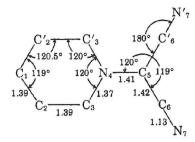


Fig. 1.—Bond distances and angles in pyridinium dicyanomethylide.

lowed by a complete full matrix isotropic weighted least-squares. The final R value for the 112 independent (h0l) data was 8%. The R value for the 429 independent three-dimensional data was 10%. The observed dimensions of the $C(CN)_3^-$ ion are: C-C bond length, 1.40, 1.40, and 1.40 \pm .01 Å.; C-N bond length, 1.15, 1.14, and 1.16 \pm 0.1 Å.; C-C-C bond angle 119°40′, 119°31′, and 119°32′ \pm 1°; C-C-N bond angle 180, 180, and 180 \pm 1°. If one passes a plane through the three nitrogen atoms of this ion, the central carbon atom is found to be 0.13 Å. above this plane and the cyanocarbon atoms are all 0.08 Å. above this plane. Each C-C-N unit makes an angle of 3° with respect to its projection in this plane. There are no abnormal interionic distances.

The structure of $C_6H_5N^+$ - $C^-(CN)_2$ was refined by the same procedure as that employed for $NH_4C(CN)_3$. The final value of R, based on 325 independent (hkl) data was 12%. The observed dimensions of the molecule are shown in Fig. 1. The molecule lies across a crystallographic mirror plane through atoms 1 and 4. The pyridinium ring as well as the trigonal carbon atom are coplanar within \pm 0.01 Å. The two cyano groups are inclined with respect to this plane such that the distance from the plane to atoms 6 and 7 are 0.08 Å. and 0.13 Å., respectively. All distances reported in this molecule have an associated estimated standard deviation of \pm 0.01 Å.

It thus appears that in both these systems a significant deviation from planarity of the carbanion group exists, even though the possibility of resonance stabilization of a planar configuration is possible. Detailed accounts of these results will be presented elsewhere.

Acknowledgment.—This work was supported by grants from the National Aeronautics and Space Administration and the Robert A. Welch Foundation.

DEPARTMENT OF CHEMISTRY
RICE UNIVERSITY
HOUSTON, TEXAS

CHARLES BUGG
ROBERT DESIDERATO
ROBERT DESIDERATO
ROBERT DESIDERATO

RECEIVED JUNE 12, 1964

Cubane

Sir:

We have completed the synthesis and fundamental characterization of the hydrocarbon cubane.

The bromocyclopentadienone dimer I, prepared as described in an earlier communication, is converted

(1) P. E. Baton and T. W. Cole, Jr., J. Am. Chem. Soc., 86, 962 (1964).

⁽¹⁾ D. A. Long, R. A. G. Carrington, and R. B. Cravenor, Nature, 196, 371 (1962)

⁽²⁾ T. A. Miller and W. K. Baer, Spectrochim. Acta, 19, 73 (1963).

to the bisethylene ketal by prolonged reflux in benzene with ethylene glycol and excess p-toluenesulfonic acid. Selective regeneration of the 1-carbonyl group with concentrated aqueous hydrochloric acid gives the 1-keto-8-ethylene ketal II, 85%, m.p. (from ether) 172–173°, $\lambda_{\rm char}^{\rm char}$ 5.78 and 6.28 μ .

Ultraviolet irradiation of II in benzene solution leads quickly to the cage compound III in nearly quantitative yield; m.p. (from methylene chloride–hexane) 148–150, $\lambda_{\rm max}^{\rm CH4Cle}$ 5.53 (sh), 5.61, and 5.63 (sh) μ .

Hot aqueous 10% potassium hydroxide readily converts III to the acid IV, 95%, m.p. (from methylene chloride-hexane) 187–189°, $\lambda_{\rm max}^{\rm CHzCl_1}$ 5.70 and 5.79 μ , $\tau_{\rm CDCl_1}$ -1.1 (1H, singlet), +6.0 (4H, symmetrical multiplet), 6.3 (5H, multiplet), and 7.2 (1H, multiplet) p.p.m.

The *t*-butyl perester V, prepared by reaction of the acid chloride of IV with *t*-butyl hydroperoxide and pyridine in anhydrous ether, undergoes ready radical fragmentation in boiling cumene. Some of the alkyl radicals thus formed (40%) combine with the connate *t*-butoxy radicals, but the major fraction (55%) escapes this and extracts hydrogen from the solvent to give VI, m.p. (from pentane) $64-65^{\circ}$, $\tau_{\rm CCl_4}$ 6.0 (4H, symmetrical multiplet), 6.5 (6H, multiplet), and 7.2 (1H, multiplet) p.p.m.

Hydrolysis of the ketal VI in 75% aqueous sulfuric acid gives the hydrate of VII. The anhydrous ketone is obtained after desiccation in boiling benzene and crystallization from hexane; 90%, m.p. 90–91°, $\lambda_{\rm max}^{\rm GCl_4}$, 3.23, 5.32 (w), 5.45 (m), 5.60 (s), 5.65 (s) and 5.73 (w) μ ; the complex carbonyl absorption probably derives from coupling with the vibrations seen at 10.22, 10.51, 10.77, and 10.98 μ , $\tau_{\rm CCl_4}$ 6.3 (6H, multiplet) and 6.9 (1H, multiplet) p.p.m.

(2) Evidently the combination with t-butoxy radical occurs within a solvent cage: the distribution of products is unchanged with variation in con-

Cubanecarboxylic acid (VIII), a most versatile intermediate, forms slowly from VII on reflux with 25% aqueous potassium hydroxide; 55%, m.p. (from pentane) 124–125°, $\lambda_{\rm max}^{\rm Col_4}$ 5.91 μ , $\tau_{\rm CCl_4}$ –2.2 (1H, singlet) and +5.6 to 6.2 (7H, multiplet) p.p.m.

Cubane is produced by thermal decomposition at 150° of the t-butyl perester (IX) of cubanecarboxylic acid in diisopropylbenzene. The hydrocarbon is removed from the solvent as it is formed entrained in a nitrogen stream and then captured in an ice trap. Crystallization from methanol and sublimation just above room temperature at atmospheric pressure gives pure material as glistening rhombs, m.p. (sealed capillary) 130–131°.

The identity of cubane follows unmistakably from the parent peak in the mass spectrum at m/e 104, from the diagnostic simplicity of the infrared spectrum in which the only noticeable absorptions in the region from 4000 to 660 cm. $^{-1}$ appear at 3000, 1231, and 851 cm. $^{-1}$, from the single-line proton magnetic resonance spectrum in which the one and only absorption appears at τ 6.0 p.p.m. with width at half-height of 0.3 c.p.s., and from the threefold symmetry axis of the monomolecular 5.34 Å. rhombohedral unit cell.

Acknowledgment.—We are indebted to Dr. Everly Fleischer of this department for the X-ray crystallographic analysis and to Dr. Seymour Meyerson of the American Oil Company for his mass determination. The National Science Foundation and the Alfred P. Sloan Foundation each contributed generously to the support of this work.

(3) The hydrocarbon is not thermally stable; significant decomposition is evident at 200°.
(4) Alfred P. Sloan Foundation Research Fellow.

DEPARTMENT OF CHEMISTRY
THE UNIVERSITY OF CHICAGO

CHICAGO 37, ILLINOIS

PHILIP E. EATON⁴ THOMAS W. COLE, JR.

RECEIVED JUNE 23, 1964