The form used for describing preparations is: substrate reagent

ROH <

a HHal/20° (room temp) or Δ if necessary

concentrated aqueous acids

$$RCH_2$$
-OH $\xrightarrow{\text{HI}}$ RCH_2 $\xrightarrow{\text{OH}}$ RCH_2 -I S_N2

but not with CI or Br (weaker Nu, 1.11Ge)

Potency of HHal increased by using e.g.

'dry' HBr (no H₂O) reaction potentially reversible, absence of H₂O drives reaction 'dry' HBr / sq H₂SO₄ increases amount of protonated alcohol (sq = small quantity)

b P-Hal reagents driving force is formation of very strong PO double bond

PHal₃ (Cl, Br, I) or mixtures P / Br₂, P / I₂

Several modern developments e.g. PPh₃ / Br₂, PPh₃ / CCl₄

PBr₃ / 10° is good method

c SOCl₂ (thionyl chloride)

simple representation:
$$R-OH + SOCI_2$$
 $\xrightarrow{\Delta} R-O-S=O$ $\xrightarrow{A-O-S=O}$ $\xrightarrow{A-O-S=O}$ $\xrightarrow{A-O-S=O}$ $\xrightarrow{A-O-S=O}$ $\xrightarrow{A-O-S=O}$ $\xrightarrow{B-O-S=O}$ $\xrightarrow{H^+}$ \xrightarrow{CI} $\xrightarrow{H^+}$ \xrightarrow{CI} $\xrightarrow{H^+}$ \xrightarrow{CI}

3 RHal (i.e. from halides obtained by the other methods given here)

RCH₂-Cl (or Br) + NaI Me₂CO /
$$\Delta$$
 RCH₂-I + NaCl (or Br) pm only S_N2 soluble in Me₂CO much less soluble, precipates

direction contrary to expectation from nucleophilicities in aprotic solvents (Section 1.13); reaction driven by precipitation of NaCl (or Br)

2.1Re

1 With Nu Yields pm—good, se—modest, te—poor Δ unless stated otherwise b R-Hal Na^{+ -O-R¹} R-O-R¹ ethers a R-Hal KOH / H₂O / R-OH alcohols R and R/ may be identical or different; highest yields with both pm d R-Hal $\xrightarrow{K^+SH^-/EtOH}$ R-SH thiols (vile smell) c R-Hal $\frac{R^1$ -CO-OAg/ Et₂O R-O-CO-R¹ esters f R-Hal \longrightarrow R - N amines e.g. Me-Br + NH₃ \longrightarrow MeNH₂ e R-Hal K+ -SR1/EtOH R-S-R1 thioethers (vile smell) g R-Hal $\xrightarrow{R_3^1 N}$ \rightarrow R- $\stackrel{+}{N}R_3^1$ Hal quaternary ammonium salts h R-Hal ———— R-PR3 Hal phosphonium salts R-Hal $\frac{\text{NaNO}_2 / \text{DMF} / 20^{\circ}}{\text{more convenient than}}$ $R - N + \frac{\text{Nitro compounds}}{\text{Nanore convenient than}}$ R - O - N = 0 $nitrite \ esters$ R-Hal NaN₃ / MeOH R-N₃ azides see notes about i,i and k at bottom of this scheme k R-Hal NaCN in H₂O / R - C≡N nitriles ~ 90% Et-I AgCN no solvent Et - N≡ C isonitrile (50%) (vile smell) no solvent AgCN reaction is complex, reliable results not available for many R-Hal; not general Pr of R-NC R-Hal $\xrightarrow{\overline{C} \equiv C - R^1}$ R-C\geq C-R\gamma disubstituted alkynes m R-Hal $\xrightarrow{CH_3-CO-\overline{C}H-CO_2Et}$ CH₃-CO-CH-CO₂Et n R-Hal $\xrightarrow{\text{CH}(\text{CO}_2\text{Et})_2}$ R-CH(CO₂Et)₂ o R-Hal $\xrightarrow{\text{LiCuR}_2^1}$ R-R¹

p R-Hal $\xrightarrow{\text{ArH}/\text{AlCl}_3}$ R-Ar e.g. $\xrightarrow{\text{Me}_3\text{C}-\text{CI}/}$ AlCl₃

Friedel-Crafts reaction, mechanism different from others here, range of R-Hal can be used