REDOX REACTIONS IN ORGANIC CHEMISTRY

Oxidation and Reduction: an atom is considered to be reduced if it gains electrons and to be oxidised if it loses electrons

This concept can be applied to carbon to decide in any reaction it has been reduced or oxidised; the following rules are important:

1. Elemental Carbon has an oxidation no of 0;

- 2. The oxidation state of any chemically bonded Carbon is assigned as -1 for each more electropositive atom which is attached, and +1 for each
- more electronegative atom. In practice, this means:
 -1 for H, B, Na, Li, Mg
 +1 for O, N, S, X
 0 for C
- 3. In compounds with multiple bonds, each atom is counted as often as the multiple bond dictates, e.g.

Oxidation Numbers of Common Functional Groups

		,	Compounds	Carbonyl		Alcohols	Alkyl Halides	(unsaturated)	Hydrocarbons	(saturated)	Hydrocarbons		Class	Compound	
										THE THE PERSONNEL PROPERTY OF THE PERSONNEL OF THE PERSON	CH ₄	-4			
							الجعة الدوا الارادية الدوارية المتراوية المتراوية المتراوية المتراوية الميادة			بدار ویک میک دور باز معمود دی خاصه وای معمود میک و مد موده ده.	RCH_3	ယ်			
						СН3ОН	CH ₃ X	***************************************	CH ₂ =CH ₂	***************************************	R_2CH_2	-2			
						RCH ₂ OH	RCH ₂ X		НС <u>=</u> СН	***************************************	R ₃ CH	-		0	
				(H ₂ C(OR') ₂	$_{ m H_2CO}$	R ₂ CHOH	CH_2X_2			***************************************	R ₄ C	0		Oxidation Number	
		(RCH(OR') ₂)	RCHO			R ₃ COH	RCHX ₂			***************************************		+1			
(RCH ₂ (OR') ₂₎	R ₂ CO	12)			HC(0)0H	***************************************	CHX ₃					+2			
			RC(O)OH			***************************************	RCX ₃					+3			
					CO_2		CX ₄			***************************************		+4			

1

Notes: R = alkyl or aryl

- (b) A horizontal interconversion necessarily involves a redox reaction
- (c) A vertical interconversion is not a redox reaction

Selective Oxidations

SUBSTRATE

REAGENT

Non-activated Carbon Atoms

 X_2 / hv

X₂ / hv or ArlCl₂

Bugs, enzymes

Activated Non-functionalized Carbon Atoms

SeO₂

SeO₂, PDC

SeO₂

 $KO^{t}Bu / (EtO)_{3}P / O_{2}$ or $LDA / Mo(VI)O(O_{2})_{2} / HMPA /$ py (MoOOPH)

 SeO_2 or (i) LDA / PhSeBr (ii) H_2O_2 /Nal O_4

Carbon Atoms of C-C Double Bonds

- (i) HOX (ii) OHor RC(O)O-OH
- (i) RC(O)O-OH (ii) OH⁻ or (i) AgOAc / I₂ (ii) OH⁻ or LAH

Carbon Atoms of C-C TripleBonds

Oxygen Containing Functional Groups

Rearrangements & Cleavages

REDUCTION

One of the most important Functional Group Interconversions which is very frequently performed in organic synthesis is that of reduction. Modern organic synthesis depends very heavily on a range of reducing agents, amongst the most useful of which are the hydride-donor reducing reagents. A selection of the more commonly used reagents are shown below, along with the substrates with which they react, and the products which are obtained.

SUBSTRATE			PRO	wets		
ACENT	R Lu	RCHO	RER RLOR		RANK	Rcoo [©]
Li AIN4	RсНъон	RCHLOH	R R	RCHLOH	R CH2 HR	Renou
Li AL[0-x-R],	rch o	R CH ₂ OH	R R	RCH _L O H	RCHO	NR
Na SHq.	-	RCHZOH	oH R ∕ R	NR	NR	NR
Na 8H3 CN	-	RCHZOH	NR	NR	ROHINR	NR
0 ₂ H6	~	RCHZOH	R L R	NR	r chinr	R CH ₇ OH
A&H3	<i>к</i> сњон	RCH ₂ on	RAR	RCHZOH	תכאים	RCHZOH
HBH	-	RUHJOH	R L R	NR	RCHO	NR
ALH (Oileal)	-	RCHOH	R L R	RcHo	RCHO	RCHZOH

Another particularly important aspect of reductions is that of selectivity, i.e. the ability to reduce one functional group in preference to another within the same molecule (this is sometimes called CHEMOSELECTIVITY). The Table below gives a general outline of the relative reactivity of different reducing agents with different functional groups.

REACTIVITY	CATALYTIC HYBROCENATION	COMPLEX	10 RANES
ніан	-c=c-)c=e(-cod, -cn	>= 0 cl ,-ch 0	-c=c-,)c=c(cooh, conR ₁ , -c=N
MEDIUM	- c + o > c = o - NO 2 Ar	OR OR OR COOR, CONHR CN	CHO CEN CEN
LOW VERLY LOW	HETEROARONES - COOR - CONR; ARENES - COOH - COO®	C == c <	AZEN ES

In reactions of this type, there is an additional element of complication, in that the approach of any reducing agent to an sp³ centre can approach, in principle, from one of two faces, to give enantiomeric products:

pro - R
$$(Re)$$
 A (Si)

Cahn-Ingold-Prelog Priority A > B > C (atomic number sequence)

performed on a chiral substrate, then diastereomeric products are possible. There are two important reaction classes:

(a) Acyclic - Cram's Rule

o o	o o	H¹C CH²
(CH ₃ I ₃ C -)	CH'	CH,

Reducing agent	°, axial	°, axial	°; axial
NaBH	20b	25°	58°
LiAlH	8	24	83
LiAl(OMe),H	9	69	
LiAl(r-BuO),H	9°	36'	95
CH ₃ CH ₂ CH−1,BH Li*	938	98 *	99.8
CH ₃],EH Li*	>99 ^h	>99 ^h	