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Building better 
theories
Clare Press1,2 ,*, Daniel Yon1, 
and Cecilia Heyes3,4

Science is made of ideas and data, 
theory and observation. Theories can 
tell us which data to collect, summarise
masses of observations, and explore 
the space of potential explanations. 
Some theories, the ones that describe 
mechanisms, can even turn straw 
into gold — transforming data into 
explanations of the world around us. 
Given the central importance of theory, 
there are good reasons to worry about 
the lack of ideas in biology1, and the 
‘theory crisis’ in the cognitive and 
behavioural sciences2,3. It has been 
argued that this lack of ‘novel ideas’ is 
slowing scientifi c progress4, but what 
can be done? 

In the long term, we need to look 
closely at how scientists are trained. 
Typically, students are taught a 
great deal about how to collect data 
and next to nothing about how to 
formulate and evaluate theory. We 
force feed techniques and statistics, 
but, like parental prudes, leave the 
kids to work out for themselves where 
theories come from. In the medium 
term, there is no shortage of detailed, 
technical advice for those with the 
freedom and inclination to make radical
changes to their science — to get into 
formal modelling or interdisciplinary 
collaboration5–7 — but even these 
changes can leave the core theoretical 
problems unresolved8. In the short 
term, we can all up our theoretical 
game by thinking a little harder about 
what theories are for, how they should 
be constructed, and which tests are 
worth the effort. 

In this My Word, we offer a checklist 
of seven questions we fi nd useful 
when formulating and testing our own 
theories, and when thinking through the
work of others in our research fi elds. 
Theory has several functions9 but, like 
many scientists, we want our work to 
contribute to explanation. Therefore, 
whenever we say ‘theory’ we mean 
mechanistic theory — the kind that 
has the potential to be explanatory10. 
Otherwise, we are broad-minded — a 

My word
Current Biology 32, R1–R31
mechanistic theory may be labelled 
as such or as a ‘model’; it can be 
formal, for example computational/
mathematical, or informal, for example 
graphical/narrative. Without naming 
and shaming, we use examples from 
our own fi elds of research — social 
cognition, memory, perception, and 
action — areas where cognitive 
science meets neuroscience and 
evolution. 

What is the target?
A theory needs a target or 
‘explanandum’ — a phenomenon that 
exists or occurs in the natural world 
that the theory is designed to explain. 
There are very few constraints on the 
size of the target — classics include 
magnetism, oxidation, fermentation, 
and lava fl ow — but, whatever the 
size or aspect of the natural world, 
the target should show some signs 
of unity, of being a ‘thing’. Say you 
want to explain imitation. If you defi ne 
imitation loosely, to encompass all 
sorts of vaguely social learning, 
you are unlikely to come up with a 
successful theory because the cases 
are probably not produced by the same 
causal structure. It is unlikely that the 
same psychological or neurological 
mechanism enables snails to fi nd food 
by following the slime trails of other 
snails and enables people to learn 
calculus by reading textbooks. On 
the other hand, if you defi ne imitation 
tightly — for example, as copying 
behavioural topography, the way that 
parts of the body move relative to one 
another — there is a decent chance 
all cases are due to the same causal 
structure; that one mechanism allows 
imitation of scowls, arabesques and 
Fosbury Flops11.

Obviously, the more you know 
about your target the better, and 
plenty of important research aims to 
characterise the target rather than 
to test theory. What are the triggers, 
modulators, and inhibitors? What 
happens when the system is damaged 
or operating under unusual conditions? 
How does the system function at 
different points in development and 
across species? Not-so-obviously, it is 
important to keep all this information in 
mind when formulating or assessing a 
theory. If a theory works for deliberate 
but not automatic imitation, or for 
imitation in primates but not in birds, 
, January 10, 2022 © 2021 Elsevier Inc. R13
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we need good reasons to regard these 
as distinct targets rather than areas 
where the theory fails. 

Scientists sometimes treat an 
effect — an impact of an independent 
variable on a dependent variable 
— as an explanatory target. This is 
risky because, although effects have 
signifi cant functions in science12, 
an effect rarely captures all and 
only the manifestations of a single 
causal structure. For example, many 
psychologists and neuroscientists are 
interested in the fi nding that perception
is often attenuated during action; we 
cannot tickle ourselves. However, it is 
risky to use this ‘sensory attenuation’ 
effect as an explanatory target 
because it can arise via many different 
routes13,14. For instance, self-produced 
tickle might be perceptually attenuated
by general gating mechanisms in 
the spine, predictive processes 
that ‘cancel out’ expected action 
outcomes, or because our attention is 
directed differently when we have to 
act and perceive simultaneously. The 
causes of sensory attenuation do not 
have the unity and specifi city needed 
to make it a good explanatory target. 
It may be better to focus theorising on 
understanding the targets (for example
prediction) that cause the effect, rather
than the effect itself. 

Do I have a theory or just a 
prediction?
‘Hypothesis’: a neat word with messy 
consequences. Used as a synonym 
for both ‘theory’ and ‘prediction’, 
‘hypothesis’ can hide the fact that 
theories and predictions are very 
different beasts7. Theories postulate 
entities and activities that produce 
and explain observable phenomena10. 
For example, Baddeley’s theory of 
working memory15 explains short-term 
retention of information (the target) 
with reference to cognitive entities 
including the ‘central executive’ and 
‘phonological loop’, and activities 
performed by these entities such as 
‘updating’, ‘binding’ and ‘inhibiting’. A 
prediction, on the other hand, is what 
you expect when you do an experimen
or perform a new analysis of existing 
data. Predictions are sometimes 
derived from theories, but having a 
prediction is no guarantee that you 
have got a theory. Say we give a test of
R14 Current Biology 32, R1–R31, January 1

working memory to 5- and 7-year-old 
children. We might expect the 7-year-
olds to do better than the 5-year-olds 
by pure extrapolation — because 
previous work shows that 5-year-olds
perform better than 3-year-olds on the
very same test. These are empirically-
based rather than theory-based 
predictions, like expecting to wake up
in the morning because we have done
so in the past. Most of us do not have
a theory of what causes waking (or 
sleeping), but we still bet when we go
to sleep tonight that we will wake up 
tomorrow.

Alternatively, we might derive 
our prediction for this experiment 
from Baddeley’s theory of working 
memory, which assigns a specifi c role
to executive function in short-term 
retention. If we have evidence from 
previous work using different tests — 
assessing vigilance or inhibitory 
control, rather than memory — that 
executive function improves between 
the ages of 5 and 7, then we could 
make the theory-based prediction tha
7-year-olds will do better than 5-year-
olds in our experiment. 

Empirically-based and theory-based
predictions can be hard to tell apart. 
For example, psychopharmacologists
often investigate how drugs that act o
neurotransmitters alter cognition and 
behaviour. A psychopharmacologist 
might predict that administering 
the drug methylphenidate — which 
enhances the synaptic availability of 
dopamine — will enhance a volunteer
ability to update working memory. Is 
this a theory-based prediction about 
the role of dopamine in working 
memory? It is tempting to think so, 
because working memory has been th
focus of many theories, and regardles
of the nature of the prediction 
the papers frequently refer to 
‘dopaminergic mechanisms’. Howeve
it is sometimes an empirically-based 
prediction — derived only from 
previous results, not from a theory 
about how the system works. Such a 
theory might postulate that increased 
synaptic availability of dopamine 
destabilises representations, making 
them more amenable to insertions of 
new information. 

Is it a theory or a framework?
A theory is bigger than a prediction 
and smaller than a framework. A 
framework is a way of thinking about 
0, 2022
all or part of the natural world. Theories 
generate predictions and live inside 
frameworks. As we are using the 
terms, theories should be testable, 
but frameworks can be useful even 
when no data could show that they 
are wrong. A nice illustration of this 
distinction comes from recent ideas 
in cognitive neuroscience surrounding 
the ‘Bayesian brain’. Scientists working 
within this framework suggest that the 
brain is fundamentally in the game of 
modelling the outside world — with 
all aspects of thought and behaviour 
arising as the brain combines 
probabilistic top-down expectations 
with the bottom-up evidence arriving 
at our senses16. The kernel of this idea 
has proved incredibly fertile, sprouting 
many specifi c theories that aim to 
explain diverse aspects of cognition. 
For example, Bayesian principles 
directly inspired the ‘strong prior’ 
theory of hallucinations, which posits 
that abnormal experiences like voice-
hearing in psychosis emerge because 
patients give an unusually strong 
weight to top-down expectations when 
perceiving their surroundings17. 

Theories of this kind — derived 
from or inspired by an explicit 
framework — do make testable 
predictions. For instance, the ‘strong 
prior’ theory predicts that patients 
who hallucinate should also show 
a stronger reliance on top-down 
knowledge in other perceptual tasks18. 
But the framework lurking in the 
background may not be amenable to 
testing in the same way. For example, 
proponents of the Bayesian brain 
framework have noted mathematical 
proofs which guarantee it is always 
possible to specify a set of prior 
beliefs that would make an observed 
thought or behaviour seem ‘Bayes 
optimal’ — that is, compliant with the 
overarching framework19. This means 
that, in principle, there is no result 
the framework cannot accommodate, 
and no pattern of possible results 
that could disprove it. Thus, our 
experiments are more likely to be 
fruitful when they aim to test theories 
rather than frameworks. 

Is the theory pointing at the target?
There are good and not-so-good 
ways for a theory to fail. A theory 
fails in a good way when it makes 
plausible, testable predictions that are 



Magazine
ll

e 

n 

r, 
e 
es 
se 

of 
 

 

re 
n 

 
g 
 

 

le, 

s 
r 

w 

 

 

m 
 

al 

our environment are related. These 

wijaj =

=

1
1 + e–ij 

ij i j 

j +

w a a

Current Biology

Figure 1. Translating theories. 
Scientifi c theories can be expressed in several ways. In our fi elds (psychology and neuroscience) 
theories are often expressed in the language of cognitive mechanisms, neural processes and for-
mal equations (or a combination thereof). Often, researchers translate theories from one of these 
languages into another: describing a cognitive model in neural terms, or reformulating a cognitive 
model as a computational one. While reformulation can have benefi ts, there is a danger that this 
process of translation leads us to think we have created a new theory. This may not be the case if 

tions (see main text ‘Is the theory new?’). 
not confi rmed by the evidence (see 
below). It fails in a not-so-good way 
when, regardless of the evidence, th
theory lacks the potential to explain 
its target. This sometimes happens 
when typologies are mistaken for 
theories. Typologies, such as the 
Linnean classifi cation of plants and 
animals, can help theory constructio
by organising and displaying the 
phenomena to be explained. Howeve
by themselves typologies do not mak
predictions or offer explanations. Typ
of social learning — such as ‘respon
facilitation’ and ‘emulation’ — are 
routinely described as ‘mechanisms 
social learning’, but they are defi ned
purely by their stimulus inputs and 
behavioural outputs. They are names
of effects rather than theories; they 
are not backed by accounts of the 
entities and activities in the mind/
brain that produce the input–output 
relationships. 

In other cases, a theory misses its 
target by postulating a causal structu
that is as much in need of explanatio
and evidence as the target itself. 
When it is discovered, this problem 
is sometimes called ‘begging the 
question’. An obvious example would
be a claim that diffi culty in recognisin
faces is caused by prosopagnosia —
the name for diffi culty in recognising 
faces. However, begging the question
can be surprisingly diffi cult to spot 
because the theoretical entities are 
typically described in a different 
language from the target. For examp
a central challenge for an imitation 
mechanism is the conversion of 
information in one modality (visual 
inputs hitting the retina) into another 
(motor commands driving execution 
of a ‘corresponding’ action). It was 
recently suggested that mirror neuron
solve the correspondence problem fo
imitation, but this proposal begs the 
question. Unless the theory tells us 
not just that but how mirror neurons 
convert visual input to motor output, 
the ‘explanation’ is as mysterious as 
the thing it is supposed to explain; 
the mirror neuron theory just moves 
the hard problem of imitation from 
behaviour into the brain.

Is the theory new?
Sometimes what appears to be a ne
theory turns out to be an old theory 
expressed in a new way (Figure 1). 
For example, across the last century 
psychologists have theorised about 
mechanisms of associative learning —
mechanisms that allow us to learn 
a ringing bell predicts an upcoming 
food pellet, or that stamping my foot
on the pedal tends to make the car 
stop. The classic Rescorla–Wagner 
theory argues that animals like us for
mental associations between events,
adjusting the strength of these links 
based on patterns we experience 
(for example, strengthening the link 
between ‘bell ringing’ and ‘food 
delivery’ if these tend to co-occur). 
This account remains infl uential 
because of its ability to explain sever
experimental phenomena — such 
as ‘blocking’, where learning about 
one predictive event is slowed in 
the presence of another competing 
predictor. 

In more recent years, however, 
alternative ‘Bayesian’ learning 
accounts have been offered, which 
suggest that learners use samples 
of experience to adjust graded 
beliefs in a ‘hypothesis space’ that 
represents how different events in 

we cannot use it to generate any new predic
Curre
newer models also predict phenomena 
like ‘blocking’ — and thus account 
for the same experimental results. 
While the associative and Bayesian 
theories are formulated using different 
mathematical frameworks, both 
suggest that learning depends on the 
same kind of information (probabilistic 
co-occurrence). Are the Bayesian 
theories new? On the one hand, it 
seems not. Re-expressing an old 
idea (adjusting associative links) in a 
new language (updating probabilistic 
beliefs) does not in and of itself 
produce a new theory, if the new 
version can only predict (and account 
for) the same phenomena. 

On the other hand, it is possible that 
the process of reformulation ultimately 
generates new predictions — meaning 
that a new theory is born. In our 
example, reformulating associative 
learning in Bayesian terms encouraged 
theorists to build ideas around variance 
and uncertainty into the learning 
process. This leads to distinctive 
empirical predictions. For example, 
Bayesian models predict that we should 
learn faster when the world is more 
volatile — a prediction, since confi rmed, 
nt Biology 32, R1–R31, January 10, 2022 R15
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Figure 2. Risky testing. 
Theories differ from each other when they make different claims about the nature of their targets. 
However, two different theories can share common assumptions about the ‘shape’ of their targets 
(generic predictions) while making divergent predictions about other features (distinctive predic-
tions). Experiments designed to test these distinctive predictions tell us the most about which 
theories are likely to be true (see main text ‘What shall I test?’). 
which could not have been derived from 
the original Rescorla–Wagner theory. 
Re-expressions are useful if, like this, 
they generate new empirical predictions.
Without this predictive novelty, 
re-expressions offer identical ideas20. 
Unfortunately, incentive structures that 
reward novelty and primacy in science 
discourage clear labelling. They make 
it tempting to present any reformulation 
as a new theory — giving the false, 
time-wasting impression that it can 
be tested against the original. These 
cosmetic reformulations can disguise 
old knowledge and lead to decades 
spent on identical research programmes
that masquerade under different labels. 
Buyers beware21.

What shall I test?
We use a theory to generate an 
empirical prediction, and when the data
are collected we confi rm or update the 
theory. Therefore, we should conduct 
those empirical tests that are most 
likely to inform the theories. What are 
they?

‘Underdetermination’ of theory 
by evidence means that a particular 
pattern of empirical results can always 
be explained by a range of actual or 
potential theories. To minimise this 
problem, we should test a theory’s 
most surprising predictions — the 
predictions that, if fulfi lled, will be 
inconsistent with the maximum 
number of alternative theories (‘risky 
testing’8; Figure 2). That is, assuming 
that all theories are based upon some 
preceding evidence and plausible 
R16 Current Biology 32, R1–R31, January 10, 
ssumptions, the most surprising 
redictions are usually those where 
heories deviate. Pitting theories 
gainst each other versus looking for 
onfi rmation of only one should not be 
 pure matter of personal taste — as 

s often claimed. The latter is more 
ikely to lead to the problem whereby 
he data do not shape the theoretical 
andscape. 

For example, contrasting models of 
erceptual expectation disagree as to 
hether top-down predictions should 
ampen or sharpen representations 

n the sensory brain. Intriguingly, both 
ampening and sharpening models 
an predict a reduction in overall brain 
ctivity when our expectations come 
rue (a generic prediction), meaning it 
s not particularly informative to look 
t global signal changes when trying 
o compare these theories. However, 
he accounts diverge sharply on 
hether the information content of 
ensory brain areas should increase 
r decrease when inputs are expected 

distinctive prediction), meaning that 
xperiments which use information-
ased measures of brain activity 
re more powerful for distinguishing 
etween accounts14. 

ave I listened to Mother Nature? 
any scientists love, and many 

hilosophers loathe, Karl Popper’s 
dea that the hallmark of science is 
alsifi cation. Philosophers have turned 
gainst the principle of falsifi cation 
ecause it suggests that a set of 
bservations could logically imply that 
2022
a theory is wrong. This is implausible 
because the results of an empirical 
study depend, not only on the 
characteristics of the target system, 
but on a mass of auxiliary assumptions 
about the validity of measurement 
and analysis techniques, the proper 
implementation of the experimental 
design, and the absence of extraneous 
infl uences on the target system. Say 
we have a theory, X, implying that 
human newborns can imitate facial 
expressions, and we run an experiment 
testing the prediction that newborns 
will open their mouths more often when 
they see an adult opening her mouth 
rather than sticking out her tongue. The 
results are disappointing; the babies’ 
facial expressions do not vary with 
those of the adult. Does this mean 
theory X is wrong? It might, but it could 
also mean that our measure of facial 
movements was not subtle enough to 
pick up the difference between mouth 
opening and tongue protrusion in 
newborns, that we did not test enough 
babies, or that the babies were too 
uncomfortable or distracted to show us 
what they could do. 

Uncertainty about the causes of 
a negative result makes it diffi cult 
to hear Mother Nature — to work 
out whether she is whispering that 
our theory is wrong, or whether 
her voice is being drowned out by 
the clanking of our own empirical 
machinery. Fortunately, the uncertainty 
can be reduced in several ways. Of 
course, it helps to use measures that 
are known to be valid and reliable, 
and statistical procedures capable 
of estimating the likelihood of a 
hypothesis under particular patterns of 
data (for example, Bayesian statistics 
that signal whether there is support 
for the null or simply inconclusive 
evidence). But risky testing, a remedy 
that is often overlooked in discussions 
of ‘reproducibility’ and the ‘replication 
crisis’, is also crucial. It is easier 
to hear Mother Nature in a result 
predicted by an alternative theory, 
and risky testing makes research 
into a conversation rather than a 
monologue. When research groups 
test their theories against each other, 
the members of group A will always 
be on hand to point out potential 
interpretive problems when group 
B declares a loss for theory A or a 
win for theory B. Initially and at a 
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Micropollutants

Michael G. Bertram1,*, 
Jake M. Martin2, Bob B.M. Wong2, 
and Tomas Brodin1

What are micropollutants? 
Micropollutants are organic and 
inorganic contaminants that have 
become widespread in ecosystems 
around the globe. By definition, 
micropollutants are of anthropogenic 
origin and occur in the environment 
at trace concentrations — that 
is, in the range of micrograms, 
nanograms, or picograms per litre 
or kilogram. These contaminants 
include a wide array of natural and 
synthetic organic compounds, 
such as pharmaceuticals and 
personal care products (PPCPs), 
perfluoroalkyl and polyfluoroalkyl 
substances (PFASs), polychlorinated 
biphenyls (PCBs), polycyclic aromatic 
hydrocarbons (PAHs), nanomaterials, 
steroid hormones, pesticides, 
and plasticisers. Likewise, metals 
present in the environment at 
greater than (potential) background 
levels fall into the category of 
micropollutants and include heavy 
metals, trace metals, and metalloids. 
Notably, while chemical pollution 
has historically been attributed 
to a defined group of industrial 
chemicals, many micropollutants 
are instead considered to be 
emerging contaminants, which 
were traditionally unmonitored and 
unregulated but are potentially 
hazardous to wildlife and human 
health.

Where are micropollutants found? 
Thousands of micropollutants are 
released due to anthropogenic 
activities and their resulting 
contamination of natural systems is 
among the leading environmental 
challenges of our time. Pathways 
by which micropollutants enter 
ecosystems are highly diverse, 
including both point sources 
(localised and stationary sources) 
such as domestic and industrial 
wastewater, and non-point sources 
(without a specifi c point of discharge) 
like agricultural runoff, road and 

Quick guide
personal level, these pointers may be 
unwelcome, but they can inspire more 
rigorous and creative tests, and deep 
collegiality among ‘rivals’. Healthy 
science involves ‘competition among 
the cooperators’22.

Persistent failure to listen when 
Mother Nature says ‘no’ can send 
science down blind alleys, wasting 
money and labour. An infl uential theory 
of cognitive development has survived 
for 40 years because frequent failures 
to fi nd imitation in newborns were 
attributed to more than 20 extraneous 
factors, including inadequate sample 
size, inappropriate statistical tests, 
and the kind of seat in which infants 
were tested. A recent meta-analysis23, 
fi nding no sign that these factors were 
modulating an underlying imitation 
effect, indicates the importance of 
letting go. It is tempting to protect 
one’s own theory with special pleading 
and post hoc hypotheses, but in 
the long term and for the scientifi c 
community as a whole, it is better 
to allow a cherished theory to fail in 
a good way (see4) — to fall nobly in 
battle with the data. 

Conclusion
If theories are like toothbrushes, 
with no one wanting to use someone 
else’s24, there are a lot of would-be 
theorists in science. Our hope is that 
this My Word will encourage aspirants 
to generate mechanistic theories that 
have unifi ed explanatory targets, are 
bigger than predictions, more testable 
than frameworks, and do not beg 
the question or imply that good old 
ideas are box fresh new ones. When 
theories with these characteristics 
are subjected to risky testing, and the 
results are interpreted by competing 
cooperators, the hay of venial science 
turns more rapidly into the gold of 
explanation.
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